Abstract:
A method of forming of a monomolecular coating (19) for surfaces of contacting elements (11, 17) of micro-mechanical devices (10), specifically, devices that have moving elements that contact other elements and that tend to stick as a result of the contact. The method uses liquid deposition, with the device being placed in a solution that contains a precursor to the formation of the coating. The precursor is chosen based on coordination chemistry between the precursor and the surface to be coated.
Abstract:
In a low-pressure reactor, the addition of nitrogen trifluoride to a gaseous organosilicon compound such as tetraethoxysilane (TEOS) or tetramethylcyclotetroxysilane (TMCTS) results in surprisingly enhanced silicon dioxide deposition rates. The oxide deposited using this process also has the capability of filling features having aspects ratios up to at least 1.0, and may exhibit low mobile ion concentrations. The process is also applicable for depositing other silicon-containing films such as polysilicon and silicon nitride.
Abstract:
One embodiment disclosed relates to a method for bi-directional progressive scanning in a display system. The method includes receiving image data for an image to be displayed, forward scanning the image data in a first direction using a linear array of controllable light elements, and reverse scanning the image data in a second direction opposite to the first direction using the linear array. Another embodiment disclosed relates to an apparatus for bi-directional progressive scanning. The apparatus includes a linear array of controllable light elements, and a scanner driver that drives a scanner apparatus using a drive signal that is applied to drive both forward and reverse optical scanning of an image by the linear array.
Abstract:
Semiconductor devices, e.g., heterojunction field effect transistors, fabricated with silicon-germnanium buffer layer and silicon-carbon channel layer structures. The invention provides a method of reducing threading defect density via reducing germanium content in a SiGe relaxed buffer layer on which a strained silicon channel layer is formed, by forming the strained silicon channel layer of a silicon-carbon alloy, e.g., containing less than about 1.5 atomic % C substitutionally incorporated in the Si lattice of the alloy.
Abstract:
A process for chemical vapor deposition of blanket tungsten thin films on titanium nitride proceeds by hydrogen reduction of tungsten hexafluoride at temperatures between 200° C. and 500° C. Tungsten film nucleation is preferably facilitated by a hydrogen plasma treatment of the titanium nitride surface of the substrate. The plasma treatment may be carried out in a separate etch chamber and transferred to a tungsten CVD chamber without intervening exposure to air, or, preferably, is carried out with a low energy etch performed with the substrate mounted on a susceptor in the chamber of the tungsten CVD reactor at which the tungsten film is to be applied.
Abstract:
A non-linear torsion hinge (12, 22) for a micro-mechanical device (10, 20) having a hinged movable element (11, 21). Each hinge (22) is comprised of two hinge strips (22a) spaced apart in the same plane, such that the axis of rotation of at least one of the hinge strips (22a) is different from the axis of rotation of the movable element (21). As a result, the hinge strip (22a) must elongate as it twists, thereby providing a greater restoring torque.
Abstract:
The present invention relates to micro-mechanical devices including actuators, motors and sensors with improved operating characteristics. A micro-mechanical device (10) comprising a DMD-type spatial light modulator with a getter (100) located within the package (52). The getter (100) is preferably specific to water, larger organic molecules, various gases, or other high surface energy substances. The getter is a non-evaporable getter (NEG) to permit the use of active metal getter systems without their evaporation on package surfaces.
Abstract:
The present disclosure describes an optical displacement sensor having a dense multi-axis array of photosensitive elements. Generally, the sensor includes a two dimensional array of multiple photosensitive elements. In one embodiment, the array includes multiple linear arrays of photosensitive elements arranged along three or more axes in a space-filling, close-packed multi-axis array. The photosensitive elements are connected to each other in such a way that motion is determinable along each of the axes by measuring differential photocurrents between photosensitive elements along each of the axes. The inventive architecture advantageously increases signal redundancy, and reduces signal drop-out or low signals due to random fluctuations in the incident or absorbed light or in the signals from the photosensitive elements.
Abstract:
In one embodiment, a delay circuit is configured to delay pixel information from an image source, such as a frame buffer. The delay circuit may be configured to delay the pixel information by an amount of time that would move a pixel projected on a surface by a distance less than a dimension of the pixel. A light modulator may modulate a light beam onto a surface, such as a display screen, based on the delayed pixel information. This advantageously allows for sub-pixel electronic alignment.
Abstract:
A method of fabricating a digital micromirror device (DMD) (10) spatial light modulator (SLM) with a hardened superstructure hinge (16). The invention comprises strengthening a hinge layer material (36) by ion implantation before etching the hinge layer material (36) to form the hinge (16), but could be implanted after etching the hinge (16). The ion implantation is applied with a predetermined energy to concentrate the implanted material (62) at the center of the hinge layer material (36). The entire process is performed using conventional robust semiconductor processes, at low temperatures. Through ion implantation, the DMD hinge (16) is strengthened to minimize or eliminate the possibility of creep. A combination of ions could be implanted if desired. The ion chosen is based on the solubility of the hinge material.