Abstract:
A third-order loop filter for a delta signal modulator comprises a single operational amplifier, and a resistor-capacitor network including a plurality of capacitors and a plurality of resistors which are connected to the operational amplifier, and satisfy a third-order transfer function.
Abstract:
A smart antenna system according to an exemplary embodiment of the present invention including a beam forming antenna which includes an active antenna and a plurality of parasitic antennas, the system including: a reactance load which is connected to the parasitic antenna; a transceiver which transmits and receives a signal to the beam forming antenna; and an antenna adjusting block which tracks a signal source in real time using a plurality of beam patterns having the largest signal size and forms a beam in a direction having the largest signal size.
Abstract:
Provided is a second order loop filter (LF). The second order LF includes: an operational amplifier including a first input, a second input receiving a differential input of the first input, and an output; an inverter inverting a signal output from the output of the operational amplifier to output an inverted signal; a first resistor connected to between the first input and a first node; a second resistor connected to between the output of the operational amplifier and the first node; a third resistor connected to between the first input and an input signal; a first capacitor connected to between the second input and the first node; a second capacitor connected to between the output of the operational amplifier and an output of the inverter; and a third capacitor connected to between the output and the first input of the operational amplifier, wherein the second input is connected to a ground voltage.
Abstract:
When an enable signal representing an offset calibration mode is received, a continuous time delta-sigma modulation apparatus generates a first signal using first and second pulse signals representing outputs of the continuous time delta-sigma modulation apparatus and an operation frequency of the continuous time delta-sigma modulation apparatus, generates first and second output bits by performing a counting operation according to a counting method that is determined according to a pulse signal of first and second comparators, applies a voltage corresponding to the first output bit to a body of a first transistor of a primary integrator, and applies a voltage corresponding to the second output bit to a body of a second transistor of the primary integrator.
Abstract:
A boost direct current-to-direct current (DC-DC) converter using a delta-sigma modulator (DSM), the boost DC-DC converter may comprise a boost driving circuit outputting an output voltage to output terminals by boosting an input voltage, a resistance distribution circuit outputting a feedback voltage by distributing the output voltage of the boost driving circuit, a compensator outputting a compensated feedback voltage by compensating for the feedback voltage outputted by the resistance distribution circuit based on a reference voltage, a delta-sigma modulator outputting a digital signal by modulating the compensated feedback voltage and a duty controller outputting a duty control signal for controlling a switching duty of the boost driving circuit by receiving the output of the delta-sigma modulator.
Abstract:
Provided is a fully differential signal system including a first amplification unit including first and second output terminals configured to output an output differential signal generated based on an input differential signal and a common mode feedback signal; a common mode detection unit configured to detect a common mode signal included in the output differential signal; a second amplification unit including a feedback signal output terminal configured to output the common mode feedback signal generated based on the detected common mode signal and a reference signal; a first stabilization unit connected between the first output terminal and the feedback signal output terminal; and a second stabilization unit connected between the second output terminal and the feedback signal output terminal. The fully differential signal system stably operates and an operation performance of the fully differential signal system is improved.
Abstract:
Provided is a signal transmission device including a first modulation unit generating a first modulated signal having at least three logic levels by modulating an input signal; a characteristic adjustment unit generating an adjusted first modulated signal by adjusting the at least one of electrical characteristic values based on an adjustment signal; a second modulation unit generating a second modulated signal by modulating the adjusted first modulated signal; and an adjustment operation unit generating the adjustment signal based on electrical characteristic values respectively corresponding to the at least three logic levels of the first modulated signal and corresponding to at least three logic levels of the second modulated signal. Linearity of the modulated signal generated by the provided signal transmission device is enhanced.
Abstract:
A signal amplification apparatus includes a first modulator configured to receive an envelope signal, use a predetermined reference level to separate the received envelope signal into a first period and a second period, digitally modulate a signal of the second period to output the digitally modulated signal to a first output terminal, and output a signal of the first period to a second output terminal. Further, the signal amplification apparatus includes a second modulator configured to mix the digital modulated signal input through the first output terminal with a phase modulated carrier signal; an envelope modulator configured to output the signal of the first period as a power supply signal; and a power amplifier configured to amplify the mixed signal output by the second modulator to output the amplified signal.
Abstract:
Provided is a method of correcting a time misalignment between envelope and phase components in a transmitting apparatus which separates envelope and phase components of a signal, processes them, and then recombines them to transmit the recombined signal. For this, in a method of correcting a time misalignment between envelope and phase components according to an embodiment of the present invention, a time misalignment is corrected by applying a time delay to at least one of envelope and phase components in digital and analog signal processing operations, or applying a time delay to an envelope or phase component by a pre-processing operation.
Abstract:
Provided is a delta-sigma modulator including a summer summing an input signal and an analog signal, a first integrator integrating an output signal from the summer and outputting a first integration signal, a second integrator integrating the first integration signal and outputting a second integration signal, a comparator comparing the second integration signal and a reference signal and outputting a digital signal according to the comparison result, and a digital-to-analog converter converting the digital signal into an analog signal in response to a clock signal and outputting the converted analog signal, wherein the second integrator operates based on an Nth order (where N is natural number of 1 or greater) transfer function.