Abstract:
A method for producing apparatus for producing and photovoltaic device including semiconductor layers with halide heat treated surfaces that increase grain growth within at least one of the semiconductor layers and improve the interface between the semiconductor layers. The halide heat treatment includes applying and heating multiple coatings of a halide compound on surfaces adjacent to or part of the semiconductor layers.
Abstract:
A method for producing, apparatus for producing and photovoltaic device including semiconductor layers with halide heat treated surfaces that increase grain growth within at least one of the semiconductor layers and improve the interface between the semiconductor layers. The halide heat treatment includes applying and heating multiple coatings of a halide compound on surfaces adjacent to or part of the semiconductor layers.
Abstract:
A photovoltaic cell can include a dopant in contact with a semiconductor layer. The photovoltaic cell can include a transparent conductive layer and a first semiconductor layer in contact with the transparent conductive layer, the first semiconductor layer including magnesium. In certain circumstances, a substrate can be a glass substrate. In other circumstances, a substrate can be a metal layer. The first semiconductor layer can include CdS. The first semiconductor layer can have a thickness of between about 200 or 3000 Angstroms. The first semiconductor layer can include 1-20% magnesium. A method of manufacturing a photovoltaic cell can include providing a transparent conductive layer and depositing a first semiconductor layer in contact with the transparent conductive layer, the first semiconductor layer treated with magnesium.
Abstract:
Methods and devices are described for a photovoltaic device. The photovoltaic device includes a glass substrate, a semiconductor absorber layer formed over the glass substrate, a metal back contact layer formed over the semiconductor absorber layer, and a p-type back contact buffer layer formed from one of MnTe, Cd1-xMnxTe, and SnTe, the buffer layer disposed between the semiconductor absorber layer and the metal back contact layer.