摘要:
By improving the embedding property of a light-transmissive material constituting a waveguide, light collection efficiency is improved, and reliability of a solid-state imaging device is ensured.In a solid-state imaging device including a light-receiving section (1) which performs photoelectric conversion in response to receipt of light and a waveguide (20) composed of a light-transmissive material formed in an insulating film 5 which covers a substrate provided with the light-receiving section (1), in which the waveguide (20) guides incident light from outside to the light-receiving section (1), the waveguide (20) is provided with a forward tapered portion in which the size of the planar shape viewed from the direction of incident light decreases from the light incident side surface toward the light-receiving section.
摘要:
A semiconductor device and a method of manufacturing the device includes a first buried wiring, a second buried wiring formed as a layer different from the first buried wiring, a contact hole, which is formed between the first buried wiring and the second buried wiring and is filled with a wiring material for electrically connecting the first buried wiring and the second buried wiring therethrough, and a dummy hole, which has a hole diameter different from the contact hole, is so formed in vicinity of the contact hole as to connect the first buried wiring, and is filled with a wiring material therein.
摘要:
An improved method for producing a semiconductor device with a fluorine-doped silicon oxide interlayer insulating film. In one embodiment, the fluorine-doped silicon oxide layer (FSG layer) is formed in a process chamber. Thereafter, a silicon oxide layer is formed in the same process chamber over the FSG layer at a higher temperature than the FSG layer formation temperature. In another embodiment, after the FSG layer is formed, a surface layer of the FSG layer is selectively sputtered away before the silicon oxide layer is formed.
摘要:
An exposure apparatus which forms a predetermined mask pattern on a target workpiece through exposure by: casting exposure light upon a mask in which the pattern and a mask-side alignment mark are formed, and forming an image of the mask on the target workpiece by projecting the exposure light, which passes the mask, on the target workpiece through a projection lens, includes: an alignment lighting unit configured to cast, as alignment light, light in a wavelength range included in the exposure light onto the mask-side alignment mark of the mask; and an alignment camera unit including an image pickup device for capturing images, and configured to receive the incident alignment light coming from the alignment lighting unit through the mask and the projection lens.
摘要:
A solid-state imaging device having a plurality of light-receiving sections which are disposed in a substrate and which generate charge in response to incident light, a planarizing layer which covers predetermined elements disposed on the substrate to perform planarization, a plurality of signal lines disposed above the planarizing layer and a waveguide which guides incident light to each of the light-receiving sections, the waveguide passing through the space between the plurality of signal lines.
摘要:
Disclosed herein is a capacitive element formed by multilayer wirings, wherein a total capacitance, intralayer capacitance and interlayer capacitance are calculated for a plurality of device structures by changing parameters relating to the multilayer wirings in an integrated circuit, a device structure is identified, from among the plurality of device structures, whose difference in the total capacitance between the device structures is equal to or less than a predetermined level and at least either of whose ratio of the intralayer capacitance to the total capacitance or ratio of the interlayer capacitance to the total capacitance satisfies a predetermined condition, and the parameters of the device structure satisfying the predetermined condition are determined as the parameters of the multilayer wirings.
摘要:
By improving the embedding property of a light-transmissive material constituting a waveguide, light collection efficiency is improved, and reliability of a solid-state imaging device is ensured. In a solid-state imaging device including a light-receiving section (1) which performs photoelectric conversion in response to receipt of light and a waveguide (20) composed of a light-transmissive material formed in an insulating film 5 which covers a substrate provided with the light-receiving section (1), in which the waveguide (20) guides incident light from outside to the light-receiving section (1), the waveguide (20) is provided with a forward tapered portion in which the size of the planar shape viewed from the direction of incident light decreases from the light incident side surface toward the light-receiving section.
摘要:
In order to form an aluminum system wiring that does not peel off on an insulating film containing fluorine and to improve the reliability thereof, a semiconductor device according to the present invention includes an insulating film (14) containing fluorine formed on a substrate (11), a titanium aluminum alloy film (17a) formed on the insulating film (14) containing fluorine, and a metallic film (17b) comprising aluminum or an aluminum alloy formed on the titanium aluminum alloy film (17a).
摘要:
In order to form an aluminum system wiring that does not peel off on an insulating film containing fluorine and to improve the reliability thereof, a semiconductor device according to the present invention includes an insulating film (14) containing fluorine formed on a substrate (11), a titanium aluminum alloy film (17a) formed on the insulating film (14) containing fluorine, and a metallic film (17b) comprising aluminum or an aluminum alloy formed on the titanium aluminum alloy film (17a).
摘要:
A solid-state imaging device has: an imaging region in which a plurality of pixels each having a photoelectric conversion element are arranged, and a color filter. The color filter includes: filter components of a first color (2G), filter components of a second color (2R) formed by self-alignment and each being surrounded by the filter components of the first color (2G), and filter components of a third color (2B) formed by self-alignment and each being surrounded by the filter components of the first color (2G).