Abstract:
A system and method for controlling operation of an internal combustion engine having at least one fuel injector. A controller is configured to selectively command the at least one fuel injector to deliver a primary fuel injection of a first fuel quantity and a secondary fuel injection of a second fuel quantity. The first fuel quantity is above a predefined threshold and the second fuel quantity is at or below the predefined threshold. The controller is configured to command a primary pulse width and a secondary pulse width, based in part on a respective desired fuel injection mass and respective initialized values of fuel injector slope. Operation of the fuel injectors is controlled based in part on a converged primary fuel injector slope and a converged secondary fuel injector slope determined at partially from a comparison of a calculated fuel mass and an estimated fuel mass.
Abstract:
An internal combustion engine is configured to operate in a homogeneous-charge compression-ignition combustion mode. Operation of the engine includes determining a combustion pressure parameter for each cylinder. Fueling for each cylinder is controlled responsive to a target state for the combustion pressure parameter for the corresponding cylinder. An end-of-injection timing and a corresponding spark ignition timing for each cylinder are controlled responsive to a target mass-burn-fraction point for an engine operating point.
Abstract:
An engine assembly includes an internal combustion engine with an engine block having at least one cylinder. An intake manifold and an exhaust manifold are each fluidly connected to the at least one cylinder and define an intake manifold pressure (pi) and an exhaust manifold pressure (pe), respectively. A controller is operatively connected to the internal combustion engine and configured to receive a torque request (TR). The controller is programmed to determine a desired fuel mass (mf) for controlling a torque output of the internal combustion engine. The desired fuel mass (mf) is based at least partially on the torque request (TR), the intake and exhaust manifold pressures and a pressure-volume (PV) diagram of the at least one cylinder.
Abstract:
An internal combustion engine is configured to operate in a homogeneous-charge compression-ignition combustion mode and a spark-ignition combustion mode employing late intake valve closing. A method for operating the internal combustion engine includes determining an amount of residual gas re-inducted into a combustion chamber from a previous engine cycle and determining an amount of fresh air trapped in the combustion chamber for the present engine cycle based upon the amount of residual gas re-inducted into the combustion chamber from the previous engine cycle. Engine fueling to the cylinder for the present engine cycle is controlled based upon the amount of fresh air trapped in the combustion chamber for the present engine cycle.
Abstract:
A system for controlling power transfer includes a direct current (DC)-DC converter connected to a charging bus and selectively connected to a propulsion battery assembly and a supplemental battery assembly, the propulsion battery assembly having a first chemistry and configured to supply power to an electric motor of a vehicle, the supplemental battery assembly having a second chemistry that is different than the first chemistry. The system also includes a charger connected to the charging bus at a first side of the DC-DC converter, the charging bus connected to a load at a second side of the DC-DC converter, and a controller configured to control the DC-DC converter to perform a charging operation.
Abstract:
An apparatus for charging an electric vehicle includes a plug command center having data identifying an availability of an amount of energy which is available for transfer from a first battery system of a first battery electric vehicle (BEV) to a second BEV. A charging adapter provides for energy transfer between a first plug of the first BEV and a second plug of the second BEV. A V2V charging controller communicates data identifying a battery system charge state of the first BEV and a battery system charge state of the second BEV and selects between multiple available charging options.
Abstract:
A system for utilizing a deployable flex range battery to augment a primary battery is provided. The system includes a flex electronics bay. The flex electronics bay is electrically connected to an electrical sub-system including the primary battery and includes a DC-DC converter operable to change a voltage of electric power and at least one battery connection terminal. The system further includes the deployable flex range battery removably connected to the at least one battery connection terminal and a flex electronics bay controller programmed to selectively supply electric power from the flex electronics bay to the electrical sub-system.
Abstract:
An internal combustion engine includes a fuel injection system including a fuel injector disposed to inject fuel into the combustion chamber, and a plasma ignition system including a groundless barrier discharge plasma igniter that protrudes into the combustion chamber. A controller includes an executable instruction set to control the engine in a compression-ignition mode when the output torque request indicates a low load condition, including instructions to control a variable valve actuation system and control the plasma ignition system to execute plasma discharge events subsequent to controlling the fuel injection system to execute a fuel injection event, wherein the fuel injection event achieves a cylinder charge having a lean air/fuel ratio.
Abstract:
A vehicle includes an engine having a combustion chamber with an inlet and an outlet. Valves and valve actuators regulate open and closing of the inlet and the outlet. A plasma ignition source initiates ignition in the combustion chamber. A controller is in communication with the inlet valve actuator and outlet valve actuator. The controller is configured to detect a transition from a first combustion mode of the engine to a second combustion mode of the engine. The controller is also configured to change at least one of an opening time, a closing time, and an open duration of the first valve in response to detecting the transition.
Abstract:
A vehicle includes an engine having a combustion chamber with an inlet and an outlet. Valves and valve actuators regulate open and closing of the inlet and the outlet. A plasma ignition source initiates ignition in the combustion chamber. A controller is in communication with the inlet valve actuator and outlet valve actuator. The controller is configured to detect a transition from a first combustion mode of the engine to a second combustion mode of the engine. The controller is also configured to change at least one of an opening time, a closing time, and an open duration of the first valve in response to detecting the transition.