Abstract:
A machine bearing disposed on a rotatable member, such as may be present on a vehicle, is described. A method for monitoring a state of health of the machine bearing includes monitoring, via a microphone, an acoustic signal, and coincidently determining a rotational speed of the rotatable member associated with the machine bearing. The sound spectrum is correlated to the rotational speed of the rotating member, and a time-frequency analysis is executed to determine a sound spectrum. The sound spectrum is transformed to a residual spectrum. A first feature associated with a first frequency band and a second feature associated with a second frequency band are extracted from the residual spectrum. The state of health associated with the machine bearing is detected based upon the first and second features, and is communicated to a second controller.
Abstract:
Methods and systems are provided for evaluating a CAN that includes a CAN bus and a plurality of modules configured to communicate over the CAN bus. A voltage sensor may be provided in electrical communication with the CAN bus. A number (N) of pairs of voltages may be read. Each pair may include a CAN high (CAN-H) value and a CAN low (CAN-L) value. The N pair of voltages may be processed through a comparison of the CAN-H values and the CAN-L values. Whether a fault signature is present in the CAN-H and CAN-L values may be determined from the processing.
Abstract:
A method of controlling a vehicle having an electric power steering system includes generating a plurality of possible routes. Each of the plurality of possible routes that require a steering torque that is within an available torque range is identified as a system compliant route. Each of the plurality of possible routes that require an angular position of an electric motor of the electric power steering system at all time indices throughout that route that are within an available motor position range are also identified as a system compliant route. One of the identified system compliant routes is selected based on at least one selection criteria, and designated as an active route. The electric power steering system is then controlled to maneuver the vehicle along the active route. The electric power steering system is monitored as the vehicle moves along the active route to identify degradation of its capabilities.
Abstract:
A system includes control modules, a low-voltage communications bus, e.g., a CAN bus of a vehicle, a voltage sensor that measures a bus voltage and outputs 2.5-3.5 VDC high-data and 1.5-2.5 VDC low-data, and a host electronic control unit (ECU). The host ECU detects a recoverable fault using a data pattern in the bus voltage data when the data is outside of a calibrated range, and recalibrates the sensor. Recalibration may be by adjustment to a scaling factor and/or a bias value. Non-recoverable “stuck-at-fault”-type or “out-of-range”-type faults may be detected using the pattern, as may be a ground offset fault. A method includes measuring the bus voltage using the sensor, comparing the output data to a range to detect the fault, and isolating a sensor fault as a recoverable fault using the data pattern when the data is outside of the range. The sensor is then be recalibrated.
Abstract:
A vehicle including an internal combustion engine, a DC power source and a controller are described. The internal combustion engine includes an engine starting system and an electrical charging system. A method for monitoring the DC power source includes determining a State of Charge (SOC) for the DC power source. Upon detecting that the SOC is less than a threshold SOC, routines are executed in the controller to evaluate a plurality of potential root causes associated with the low SOC. At least one of the potential root causes associated with the low SOC may be identified as a candidate root cause, and a fault probability for each of the candidate root causes is determined. One of the candidate root causes is determined to be a final root cause based upon the fault probabilities associated with the candidate root causes.
Abstract:
A method diagnoses a no-start condition in a powertrain having an engine and a starter system operable for starting the engine. The starter system includes a battery, solenoid relay, starter solenoid, and starter motor. The method includes recording starter data over a calibrated sampling duration in response to a requested start event when the solenoid relay is enabled, including a cranking voltage and engine speed. If no battery current sensor is used, the method derives a resistance ratio using an open-circuit voltage and a minimum cranking voltage of the battery. When such a sensor is used, the method derives a battery and starter resistance. A fault mode of the starter system is then identified via a controller using the starter data and either the resistance ratio or the battery and starter resistances. A control action executes that corresponds to the identified fault mode.
Abstract:
A method is disclosed for detecting ground faults in a communications system. The method includes measuring a predetermined number of voltage points; determining if the measured voltage points represent recessive or dominant bits; identifying which of the predetermined number of voltage points represent inter-frame bits and which represent frame data bits based on whether the measured voltage points are recessive or dominant; calculating a maximum average voltage for the inter-frame bits; calculating an average frame voltage for all dominant bits within a frame; determining a high average dominant voltage count based on a number of frames for which the average frame voltage is greater than a high voltage threshold; and determining if a ground fault exists based on the average frame voltage and the high average dominant voltage count.
Abstract:
An internal combustion engine employs a starting system. A method for evaluating the starting system includes determining a cranking resistance ratio between a starter and a battery of the starting system during engine cranking. The cranking resistance ratio is normalized based upon an operating temperature of the starting system, and the starting system is evaluated based upon the normalized cranking resistance ratio.
Abstract:
A vehicle, a system and a method of navigating the vehicle. The system includes a camera conveyed by the vehicle and a processor. The camera is configured to obtain an original image data file of an environment. The processor is configured to reduce the original image data file to obtain a reduced image data file and determine an alignment between a camera-centered coordinate system and a ground coordinate system using the reduced image data file.
Abstract:
A vehicle, arc fault protection device of the vehicle and a method for mitigating an arc fault in an electrical system of the vehicle. The arc fault protection device includes a sensor, a switch, and a processor. The sensor is used for measuring a current in an electrical system. The processor is configured to determine a precursor phase of an arc fault from the current, wherein the precursor phase indicates an onset of an arc flash phase of the arc fault. The processor opens the switch to mitigate the arc fault during the arc flash phase.