Abstract:
There is provided is an energy storage device having improved power performance at a relatively large current. In the present embodiment, an energy storage device is provided, which has a negative active material layer containing particulate amorphous carbon, wherein a distribution curve of differential pore volume in the negative active material layer has a peak appearing within the range from 0.1 μm to 2 μm inclusive and the differential pore volume at the peak is 0.9 cm3/g or more.
Abstract:
An energy storage device includes: a core; and a wound body including, layered and wound around the core: a positive electrode, a negative electrode, and two separators, one of which is interposed between the positive electrode and the negative electrode and each having a first surface and a second surface. The first surface has thermal bonding properties superior to thermal bonding properties of the second surface, and at least one of the two separators is bonded to the core via the first surface thereof.
Abstract:
An energy storage unit having plural energy storage devices, each of which includes a container housing an electrode assembly and positive and negative electrode terminals electrically connected to the electrode assembly and extending from the container in the same direction, includes: a bus bar electrically connecting a first terminal, which is one of the positive electrode terminal and the negative electrode terminal of a first energy storage device included in the plural energy storage devices, and a second terminal, which is one of the positive electrode terminal and the negative electrode terminal of a second energy storage device included in the plural energy storage devices and opposite in polarity to the first terminal; a packing member interposed between the first terminal and the container of the first energy storage device; and an insulating member interposed between the bus bar and the container of the first energy storage device.
Abstract:
Provided is an electric storage device provided with: a positive electrode including a positive electrode substrate and a positive electrode mixture layer, the positive electrode mixture layer being formed on the positive electrode substrate and containing a positive electrode active material; a negative electrode including a negative electrode substrate and a negative electrode mixture layer, the negative electrode mixture layer being formed on the negative electrode substrate and containing a negative electrode active material; and a separator disposed between the positive electrode and the negative electrode. In the electric storage device, the separator yields a triple value of standard deviation of local air resistance, as measured within a 5-mm diameter circle, of at least 20 seconds/10 cc but not more than 350 seconds/10 cc.
Abstract:
An electric storage device includes: an electrode assembly in which electrodes are wound such that paired curved portions and a straight portion connecting the paired curved portions are formed; a case which houses the electrode assembly, the case comprising a convex part protruding toward the straight portion of the electrode assembly to support the straight portion; and a support portion which supports the curved portion toward an inside of the electrode assembly.
Abstract:
Provided is an energy storage device which employs the use of a separator provided with a layer having poor thermal properties such as a heat resistant coated layer and is capable of inhibiting a decrease in performance. The energy storage device includes: a wound body including a positive electrode, a negative electrode, and separators which are layered and wound, the separators being interposed between the positive electrode and the negative electrode and having a first surface and a second surface, the first surface having thermal bonding properties superior to thermal bonding properties of the second surface; and an insulation sheet wound around an outermost layer of the wound body. At least one of the separators is bonded to the insulation sheet via the first surface thereof.
Abstract:
An energy storage element, wherein a non-aqueous electrolyte contains lithium difluorobis(oxalato)phosphate that is a first additive represented by Formula (1): and lithium tetrafluorooxalatophosphate that is a second additive represented by Formula (2): wherein the amount of the first additive to be added is not less than 0.3% by weight and not more than 1.0% by weight based on the total weight of the non-aqueous electrolyte, and the amount of the second additive to be added is not less than 0.05 times and not more than 0.3 times the amount of the first additive to be added.
Abstract:
An electric storage device is provided with an electrode assembly including a positive electrode plate and a negative electrode plate; a case for housing the electrode assembly; a positive-electrode external terminal arranged on an outer surface of the case and electrically connected to the positive electrode plate; a negative-electrode external terminal arranged on an outer surface of the case and electrically connected to the negative electrode plate; and a gas exhaust valve formed in a region of the case on the opposite side of a region where the positive-electrode external terminal and the negative-electrode external terminal are arranged.
Abstract:
An energy storage device including a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte, wherein the negative electrode includes a negative electrode active material layer containing a non-graphitizable carbon as a negative electrode active material, and the negative electrode active material has a negative electrode active material weight per unit volume of the negative electrode active material layer of 0.92 g/cc or more and 1.13 g/cc or less and a particle size D90 of 4.3 μm or more and 11.5 μm or less, the particle size D90 being a particle size in particle size distribution in which a cumulative volume is 90%.
Abstract:
An aspect of the present invention is an energy storage device including an electrode assembly that has a negative electrode and a positive electrode, where the negative electrode contains a negative electrode substrate and a negative active material, and has a negative active material layer disposed in an unpressed shape along at least one surface of the negative electrode substrate, the negative active material includes solid graphite particles as a main component, and the solid graphite particles have an aspect ratio of 1 or more and 5 or less.