Abstract:
An electronic device includes a marker with a pattern of marks encoding product information of the electronic device. The pattern includes first marks having a first material with a first isotopic ratio of an element, and second marks having a second material with a second isotopic ratio of the element different than the first isotopic ratio.
Abstract:
Examples include microfluidic devices. Example microfluidic devices comprise a first microfluidic channel, a second microfluidic channel, and microfluidic output channel fluidly coupled to the first microfluidic channel and the second microfluidic channel via a fluid junction. The example device comprises a first fluid actuator disposed in the first microfluidic channel to actuate to thereby pump a first fluid into the microfluidic output channel, and the example device comprises a second fluid actuator disposed in the second microfluidic channel to actuate to pump a second fluid into the microfluidic output channel. The first fluid actuator and the second fluid actuator are to actuate to thereby pump a fluid mixture of the first fluid and the second fluid into the microfluidic output channel.
Abstract:
A sample comprising a first substance and a second substance is modified by breaking down molecular bonds of the second substance of the sample to form a modified sample having altered surface enhanced luminescence (SEL) characteristics to reduce overlapping of SEL characteristics of the first substance in the second substance. Surface enhanced luminescence data resulting from excitation of the modified sample is collected. Characteristics of the first substance based upon the collected surface enhanced luminescence data are identified.
Abstract:
A display may include a substrate, an array of thin film transistors, an array of micro-light-emitting diode elements supported by the substrate and an array of sensing elements supported by the substrate. Each sensing element may include a continuous conductive layer functioning as part of the sensing element and extending along the substrate as an electrically conductive trace connected to one of the thin film transistors.
Abstract:
A printhead having a number of single-dimensional memristor banks is described. The printhead includes a number of nozzles to deposit an amount of fluid onto a print medium. Each nozzle includes a firing chamber to hold the amount of fluid, an opening to dispense the amount of fluid onto the print medium, and an ejector to eject the amount of fluid through the opening. The printhead also includes a number of single-dimensional memristor banks. Each memristor bank includes a number of memristors arranged in a single dimension and a number of serially-connected de-multiplexers to selectively activate a target memristor of the memristor bank. The number of serially-connected de-multiplexers is equal to the number of memristors and an output of at least one de-multiplexer is an input into a subsequent de-multiplexer.
Abstract:
Ink property sensing on a printhead is described. In an example, a substrate for a printhead includes a cap layer having bores. Chambers are formed beneath the cap layer in fluidic communication with the bores. Fluid ejectors are disposed in at least a portion of the chambers. At least one ion-sensitive field effect transistor (ISFET) is disposed in a respective at least one of the chambers. An electrode is disposed in each of the chambers having an ISFET and capacitively coupled to said ISFET through a dielectric.
Abstract:
Devices to detect a substance and methods of producing such a device are disclosed. An example device to detect a substance includes an orifice plate defining a first chamber. A substrate is coupled to the orifice plate. The substrate includes nanostructures positioned within the first chamber. The nanostructures are to react to the substance when exposed thereto. A seal is to enclose at least a portion of the first chamber to protect the nanostructures from premature exposure.
Abstract:
A surface enhanced luminescence (SEL) sensor may include a substrate and nano fingers extending from the substrate. In one implementation, the nano fingers may be arranged in a cluster of at least three nano fingers extending from the substrate. The nano fingers of the cluster having different geometries so as to bend into a closed state such that each of the nano fingers of the cluster are linked to one another.
Abstract:
In some examples, a micro light-emitting diode (μLED) panel may include a μLED including at least two electrodes (or bond pads), and a ferromagnetic material included in the at least two electrodes (or bond pads) and/or disposed on the at least two electrodes (or bond pads). The μLED panel may further include a panel substrate including ferromagnetic material selectively disposed at least at two locations corresponding to locations of the at least two electrodes (or bond pads) to align a plurality of μLEDs including the μLED onto the panel substrate.
Abstract:
According to examples, an apparatus may include a printhead assembly containing a housing supporting a printhead. The printhead may have nozzles that are to fire droplets of a functional agent onto a layer of build material particles along respective flight paths to form sections of a 3D object from the build material particles, an array of light emission devices to direct respective light beams in the respective flight paths, and an array of photon detectors to detect respective light beams directed from a light source of the array of light emission devices, the light emission devices and the photon detectors being supported on the housing. The apparatus may also include a controller to determine whether any of the nozzles is operating improperly based upon whether the photon detectors detected the light beams and to output an instruction regarding an improperly operating nozzle in response to a determination that the nozzle is operating improperly.