Abstract:
A user equipment, UE (4), registered with an anchor cell base station (3-0) of an anchor cell (2-0) of a cellular wireless network (1), the UE (4) comprising a determination unit being adapted to predict an inter cell interference, ICI, at the UE (4), caused by base stations (3-1 to 3-6) of neighboring cells (2-1 to 2-6), depending on precoding matrix indicators, PMIs, of precoding matrices, PMs, the PMIs being exchanged between the anchor cell base station (3-0) of the anchor cell (2-0) and the base stations (3-1 to 3-6) of the neighboring cells (2-1 to 2-6).
Abstract:
An apparatus and a method for multi-user scheduling in a MIMO system are disclosed. In an embodiment the method includes, receiving, by a base station, PMIs and CQIs of first codewords and second codewords, where the PMIs and the CQIs are fed back by N UEs; grouping UEs whose PMIs are the same into one pairing group to divide the N UEs into M pairing groups; and determining a user pairing combination of each pairing group according to a CQI of a first codeword of each UE in the pairing group and a CQI of a second codeword of each UE in the pairing group. The method further includes determining an optimal user pairing combination from M user pairing combinations. The base station schedules two UEs in the optimal user pairing combination simultaneously.
Abstract:
Disclosed are an adaptive frequency domain resource configuration method, an apparatus, and a communications system. The method includes receiving, by a receiving apparatus, a pilot signal transmitted by a transmitting apparatus and feeding back channel information of a channel for transmitting the pilot signal to the transmitting apparatus by measuring the pilot signal, so that the transmitting apparatus divides a bandwidth frequency of the transmitting apparatus according to the channel information. The receiving apparatus can feed back the channel information to the transmitting apparatus according to the received pilot signal, so that the transmitting apparatus can divide the bandwidth frequency according to channel quality, and adaptive adjustment can be performed on a frequency domain resource of each subcarrier according to the channel information fed back by the receiving apparatus.
Abstract:
Embodiments of the present invention disclose a feeding network, and the feeding network includes: a first balun device of a first feeding subnetwork, where the first balun device is connected to a PCB positive 45-degree polarized port, which results in an equal amplitude and a 180-degree phase difference of signals at the first positive 45-degree polarized output port and the second positive 45-degree polarized output port; and a second balun device of a second feeding network, where the second balun device is connected to a PCB negative 45-degree polarized port, which results in an equal amplitude and a 180-degree phase difference of signals at the first negative 45-degree polarized output port and the second negative 45-degree polarized output port. The feeding network in the embodiments has a relatively small size and can cover multiple frequency bands.
Abstract:
Embodiments of the present invention provide a method for communication through a distributed antenna array system and an array system. The antenna array system includes a number of antenna units, a baseband resource pool, a radio frequency resource pool, and a controller. The controller is configured to monitor a signal state of a user equipment under a coverage area of a macrocell, to determine an antenna unit that provides a service to the user equipment, and, according to a capability of the user equipment, determine whether to perform coordinated transmission of a plurality of antennas and a corresponding transmission mode for the user equipment, and then to configure an antenna resource for the user equipment, so that the baseband resource pool and the radio frequency resource pool control the configured antenna resource to provide a communication service for the user equipment.
Abstract:
The present invention discloses a method for configuring a channel state information reference signal, and a base station. The method includes: obtaining location information of a user equipment; determining, according to the location information, that the user equipment is located in a cross coverage area in which at least two nodes provide service, or in a centralized coverage area in which one node provides service; when it is determined that the user equipment is located in the cross coverage area, determining, according to transmitting capabilities of the at least two nodes and a receiving capability of the user equipment, the number of ports for sending downlink signals to the user equipment; and sending CSI-RS configuration information to the user equipment, where the CSI-RS configuration information includes the number of ports.
Abstract:
Embodiments of the present invention provide a method for communication through a distributed antenna array system and an array system. The antenna array system includes a number of antenna units, a baseband resource pool, a radio frequency resource pool, and a controller. The controller is configured to monitor a signal state of a user equipment under a coverage area of a macrocell, to determine an antenna unit that provides a service to the user equipment, and, according to a capability of the user equipment, determine whether to perform coordinated transmission of a plurality of antennas and a corresponding transmission mode for the user equipment, and then to configure an antenna resource for the user equipment, so that the baseband resource pool and the radio frequency resource pool control the configured antenna resource to provide a communication service for the user equipment.
Abstract:
The present disclosure disclose a method including: a transmit end transmits at least two mixed pilot signals to a receive end separately by using at least two physical antennas. The at least two mixed pilot signals are separately obtained after preset pilot signals corresponding to logical antennas in the at least two logical antennas are weighted by using a precoding weight matrix. The transmit sends a first codebook subset restriction instruction to the receive end. The first codebook subset restriction instruction carries a rank indication RANK and at least one precoding matrix index PMI. The transmit end receives a channel quality feedback message that is fed back by the receive end according to downlink channel quality of an equivalent channel of a specified antenna. According to the present invention, a suitable serving antenna is selected for a receive end, thereby improving signal quality.
Abstract:
A method and an apparatus for transmitting control information are disclosed. The method includes: grouping UEs in a cell, and obtaining second control information of each UE group after grouping; performing joint channel coding on the second control information of each UE group; obtaining first control information, and transmitting the first control information to the UEs in the cell, where the first control information includes indication information of the second control information, on which joint channel coding has been performed, of each UE group, so as to obtain the second control information according to the indication information; and transmitting the second control information, on which joint channel coding has been performed, of each UE group to the UEs in the cell.
Abstract:
An electromagnetic dipole antenna designed in the present invention includes an antenna radiating unit and a metal ground, where the antenna radiating unit mainly includes vertical electric dipole and horizontal magnetic dipole, where the vertical electric dipole and the horizontal magnetic dipole jointly form an electromagnetic coupling structure. The antenna has advantages of small size, low profile, and the like.