Fluid filter with clear shell portion
    13.
    发明申请
    Fluid filter with clear shell portion 审中-公开
    具有透明壳体部分的流体过滤器

    公开(公告)号:US20090184041A1

    公开(公告)日:2009-07-23

    申请号:US12009965

    申请日:2008-01-23

    IPC分类号: B01D35/30 B01D27/08

    摘要: A fuel-water filter/separator for threaded connection to a mounting base has a shell and a filtering media positioned within the shell. The shell has an open top end and a substantially closed bottom end. The shell is made of an opaque plastic except for a window in the shell made from a substantially clear plastic. The substantially clear plastic in the window being insert molded to the opaque plastic. The filtering media is positioned within the shell for filtering fuel. The shell defines a water collection portion beneath the filtering media, the window of the shell being positioned such that it overlaps at least a part of the water collection portion to allow water level monitoring.

    摘要翻译: 用于与安装基座螺纹连接的燃料 - 水过滤器/分离器具有壳体和位于壳体内的过滤介质。 壳体具有敞开的顶端和基本封闭的底端。 外壳由不透明的塑料制成,除了外壳上的窗口,由一个基本上透明的塑料制成。 窗口中的基本上透明的塑料被模制成不透明塑料。 过滤介质位于壳体内,用于过滤燃料。 壳体在过滤介质下方限定出水收集部分,壳体的窗口被定位成使其与集水部分的至少一部分重叠以允许水位监测。

    Enhanced pleatability of meltblown media by ultrasonic processing
    14.
    发明授权
    Enhanced pleatability of meltblown media by ultrasonic processing 有权
    通过超声处理提高熔喷介质的褶皱度

    公开(公告)号:US06585838B1

    公开(公告)日:2003-07-01

    申请号:US09716592

    申请日:2000-11-20

    IPC分类号: B32B3116

    摘要: A process for enhancing the pleatability of a meltblown web uses ultrasonic bonding wheels to create bond lines in the machine direction as the web is being produced. In addition to, or in place of, the bond lines, ribbons made of the web material, a thermoplastic polymer, string saturated with a phenolic or ultraviolet curing resin, or beads of an ultraviolet curing resin may be ultrasonically bonded to the web to enhance its stiffness. A heated scoring bar or ultrasonic horn forms pleats in the web by heating the web above its glass transition temperature and deforming the web into the pleated configuration. Cooling of the web locks the pleats into position.

    摘要翻译: 用于增强熔喷纤维网的褶皱性的方法使用超声波粘结轮在织物生产时在机器方向上产生粘合线。 除了或代替粘合线,由网状材料制成的带,热塑性聚合物,用酚醛或紫外线固化树脂饱和的丝束或紫外线固化树脂的珠子可以超声波粘合到网上以增强 其刚度 加热的刻痕棒或超声波喇叭通过将幅材加热到高于其玻璃化转变温度并使幅材变形成褶皱构型而在幅材上形成褶皱。 网的冷却将褶皱锁定到位。

    Self-aligned contact formation for semiconductor devices
    15.
    发明授权
    Self-aligned contact formation for semiconductor devices 有权
    用于半导体器件的自对准接触形成

    公开(公告)号:US06207571B1

    公开(公告)日:2001-03-27

    申请号:US09515804

    申请日:2000-02-29

    IPC分类号: H01L2100

    摘要: In accordance with the present invention, there is provided a method for fabricating a contact on an integrated circuit, such as a DRAM. The method includes the following steps. A gate stack is formed on the integrated circuit. A spacer is formed on sidewalls of the gate stack. An insulating film is formed on the integrated circuit. The insulating film is planarized. Finally, a gate contact opening is formed through the planarized insulating film. In one embodiment, the gate contact opening is formed by removing the insulator, spacer and insulating film by etching. In this embodiment, the insulator, spacer and insulating film are etched at substantially similar rates. As a result, the integrated circuit is tolerant of mask misalignments, and does not over-etch field oxide or create silicon nitride slivers. In another embodiment, the planarizing step is performed with chemical mechanical planarization to form a substantially flat topography on the surface of the integrated circuit. Thus, the present invention does not require lithography equipment with a relatively large field of depth. In yet a third embodiment, the method may comprise additional steps, including forming additional dielectric on the integrated circuit. Then, gate and bitline contact openings are formed through the additional dielectric. Finally, gate and bitline contacts are formed in self-alignment to the gate stacks. This embodiment may be implemented by forming the gate and bitline contact openings with an etch that removes the additional dielectric, but does not substantially remove the spacer. As a result, the bitline contact cannot be inadvertently connected to a gate stack that functions as a wordline. This connection might disable the integrated circuit.

    摘要翻译: 根据本发明,提供了一种用于在诸如DRAM的集成电路上制造接触的方法。 该方法包括以下步骤。 在集成电路上形成栅极堆叠。 在栅叠层的侧壁上形成间隔物。 在集成电路上形成绝缘膜。 绝缘膜平坦化。 最后,通过平坦化绝缘膜形成栅极接触开口。 在一个实施例中,通过蚀刻去除绝缘体,间隔物和绝缘膜来形成栅极接触开口。 在该实施例中,以基本相似的速率蚀刻绝缘体,间隔物和绝缘膜。 因此,集成电路容忍掩模未对准,并且不会过度蚀刻场氧化物或产生氮化硅条。 在另一个实施例中,平面化步骤通过化学机械平面化进行,以在集成电路的表面上形成基本平坦的形貌。 因此,本发明不需要具有相当大的深度场的光刻设备。 在第三个实施例中,该方法可以包括额外的步骤,包括在集成电路上形成附加电介质。 然后,通过附加电介质形成栅极和位线接触开口。 最后,栅极和位线触点形成为与栅极堆叠自对准。 该实施例可以通过用蚀刻去除附加电介质但不基本上去除间隔物的栅极和位线接触开口来实现。 因此,位线接触不能无意中连接到用作字线的栅极堆叠。 此连接可能会禁用集成电路。

    Information system and method for providing information using a holographic element

    公开(公告)号:US20070109619A1

    公开(公告)日:2007-05-17

    申请号:US10551445

    申请日:2001-10-08

    IPC分类号: G02B26/10

    摘要: In the following, the essential points are summarized again by means of groups of characteristics which each individually and in combination with one another characterize the invention specifically: 1. Information system for providing information in correlation with light incident on an eye, having a holographic element disposed in front of the eye, and an optical scanning device which detects light incident on the eye by way of the holographic element. 2. Information system according to Point 1, wherein the optical scanning device is at a fixed predetermined angular ratio with respect to the holographic element. 3. Information system according to Point 1 or 2, wherein the optical scanning device detects light which is refracted by the holographic element before it impinges on the eye and does not enter the eye. 4. Information system according to one of the preceding points, wherein the optical scanning device detects light which was first reflected back from the eye and was then refracted by the holographic element. 5. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye only at several discrete wavelengths in the visible range before the light impinges on the eye for the detection by the optical scanning device, and refracts light reflected back from the eye only at one discrete wavelength in the infrared range for the detection by the optical scanning device. 6. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye at fewer than 20, fewer than 10 or fewer than 5 discrete wavelengths in the visible range either before the light impinges on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 7. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye at a discrete wavelength in the infrared range either before the light impinges on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 8. Information system according to one of the preceding points, wherein the holographic element refracts light reflected back by the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 9. Information system according to one of the preceding points, wherein the holographic element refracts light of one or several discrete wavelengths, at which the optical scanning device has a high sensitivity. 10. Information system according to one of the preceding points, wherein the holographic element refracts light a several discrete wavelengths such that the refracted light is guided to a common point, and the angle of incidence of the light on this point permits a clear optionally also wavelength-independent conclusion on the angle of incidence of the light upon the holographic element. 11. Information system according to one of the preceding points, having an optical projection device which projects light into the eye by way of the holographic element. 12. Information system according to Point 11, wherein the light detected by the optical detection device and the light projected in front of the optical projection device run in the opposite direction through a common light guiding lens system and can be focused such by the optical scanning device or projection device that their respective beams describe the same path from or into the eye. 13. Information system for providing information in correlation with information obtained from an eye, having a holographic element disposed in front of the eye, and an optical projection device which projects light into the eye by way of the holographic element. 14. Information system according to one of Points 11 to 13, wherein the optical projection device projects light only at one or several discrete wavelengths in the visible range and/or at a wavelength in the infrared range. 15. Information system according to one of Points 11 to 14, wherein the holographic element refracts the wavelengths of the projected light. 16. Information system according to one of Points 11-15, wherein the optical projection device is in a fixed predetermined angular ratio with respect to the holographic element. 17. Information system according to Point 16, wherein the holographic element comprises one or more optical flags, whose light reflection characteristics can be used by the information system by means of a photodetector for calibrating a projection angle of the optical projection device and/or a light guiding device. 18. Information system according to Point 17, including Point 12, wherein the information system uses the light reflection characteristics of the optical flags for calibrating a scanning angle of the optical scanning device and/or a light guiding device. 19. Information system according to Point 17, wherein the optical flags are generated in that reflecting elements are imaged during the creating of the holographic element such in the holographic element that they (something is missing) reflect light of one or several wavelengths which, corresponding to the predetermined angular ratio with respect to the optical projection device is incident on the holographic element, back along the path of incidence. 20. Information system according to Point 19, wherein the photodetector device has a splitter mirror which is arranged such in the light beam of the optical projection device that it guides a portion of the light, which impinges on the splitter mirror against the projection direction, in the direction of a photodetector which detects in at least two areas situated concentrically around one another. 21. Information system according to one of the preceding points, wherein the holographic element has light-refracting characteristics at one or several discrete wavelengths, which correspond to a reflection on the concave side of an area constructed according to the curvature of a rotationally symmetrical ellipsoid. 22. Information system according to one of the preceding points, wherein the holographic element has light refracting characteristics at one or several discrete wavelengths, which correspond to a refraction on the concave side of an area constructed according to the curvature of a rotationally symmetrical ellipsoid, which refraction corresponds to a reflection on a respective conical surface which is rotationally symmetrical about the axis of rotation of the ellipsoid and is perpendicular with respect to the ellipsoid at the site of the refraction. 23. Method of providing information in correlation with light incident on an eye, whereby a holographic element is disposed in front of the eye, and an optical scanning device detects the light incident on the eye by means of the holographic element. 24. Method according to Point 23, whereby the optical scanning device is at a fixed predetermined angular ratio with respect to the holographic element. 25. Method according to Point 23 or 24, whereby the optical scanning device detects light which is refracted by the holographic element before impinging on the eye and does not enter the eye. 26. Method according to one of Points 23 to 25, whereby the optical scanning device detects light which was first reflected back from the eye and was then refracted by the holographic element. 27. Method according to one of Points 23 to 26, whereby the holographic element refracts light originating from the field of vision of the eye only at several discrete wavelengths in the visible range before its impinging on the eye for the detection by the optical scanning device and refracts light reflected back from the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 28. Method according to one of Points 23 to 27, whereby the holographic element refracts light originating from the field of vision of the eye at fewer than 20, fewer than 10 or fewer than 5 discrete wavelengths in the visible range either before its impinging on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 29. Method according to one of Points 23 to 28, whereby the holographic element refracts light originating from the visual field of the eye at a discrete wavelength in the infrared range either before its impinging on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 30. Method according to one of Points 23 to 29, whereby the holographic element refracts light reflected back from the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 31. Method according to one of Points 23 to 30, whereby the holographic element refracts light of one or several discrete wavelengths, at which the optical scanning device has a high sensitivity. 32. Method according to one of Points 23 to 31, whereby the holographic element refracts light at several discrete wavelengths such that the refracted light is guided to a common point, an the angle of incidence of the light onto this point allows a clear, optionally also wavelength-independent conclusion on the angle of incidence of the light upon the holographic element. 33. Method according to one of Points 23 to 32, whereby an optical projection device projects light by way of the holographic element into the eye. 34. Method according to Point 33, whereby the light detected by the optical scanning device and the light projected in front of the optical projection device run in the opposite direction through a common light guiding lens system and can be focused such by the optical scanning device or projection device that their respective beams describe the same path from or into the eye. 35. Method of providing information in correlation with information obtained from an eye, whereby a holographic element is disposed in front of the eye, and an optical projection device projects light by way of the holographic element into the eye. 36. Method according to points 33 to 35, whereby the optical projection device projects light only at one or several discrete wavelengths in the visible range and/or at a wavelength in the infrared range. 37. Method according to one of Points 33 to 36, whereby the holographic element refracts the wavelengths of the projected light. 38. Method according to one of Points 33 to 37, whereby the optical projection device is in a fixed predetermined angular ratio with respect to the holographic element. 39. Method according to Point 38, whereby the holographic element is equipped with one or more optical flags, whose light reflection characteristics can be used by means of a photodetector device for calibrating a projection angle of the optical projection device and/or a light guiding device. 40. Method according to Point 39, including Point 34, whereby the light reflection characteristics of the optical flags are used for calibrating a scanning angle of the optical scanning device and/or a light guiding device. 41. Method according to Point 39, whereby the optical flags are generated in that reflecting elements are imaged during the creating of the holographic element such in the holographic element that they beam light of one or more wavelengths which, corresponding to the predetermined angular ratio with respect to the optical projection device is incident on the holographic element, back along the incidence path. 42. Method according to Point 41, whereby the photodetector device is equipped with a photodetector detecting in at least two areas situated concentrically around one another, and a splitter mirror which is arranged such in the light beam of the optical projection device that it directs a portion of the light impinging on the splitter mirror against the projecting direction, in the direction of the photodetector. 43. Method according to one of Points 23 to 42, whereby the holographic element has light-refracting characteristics at one or several discrete wavelengths which correspond to a reflection on the concave side of an area constructed according to a curvature of a rotationally symmetrical ellipsoid. 44. Method according to one of Points 23 to 43, whereby the holographic element has light-refracting characteristics at one or several discrete wavelengths, which correspond to a refraction on the concave side of an area constructed according to a curvature of a rotationally symmetrical ellipsoid, which refraction corresponds to a reflection on a respective conical surface rotationally symmetrical about the axis of rotation of the ellipsoid, which conical surface is perpendicular with respect to the ellipsoid at the site of the refraction. While the preceding description with respect to the title is limited to embodiments falling under the initially mentioned generic terms “scanning information system” and “projecting information system”, each individual discussed characteristic of their disclosure can also be used in an embodiment of the systems, devices and methods initially identified by reference to their full content. The applications by the same applicant and/or the same inventors mentioned in the present application should be considered to be a correlated invention complex.

    Self-aligned contact formation for semiconductor devices
    17.
    发明授权
    Self-aligned contact formation for semiconductor devices 失效
    用于半导体器件的自对准接触形成

    公开(公告)号:US6080672A

    公开(公告)日:2000-06-27

    申请号:US915386

    申请日:1997-08-20

    摘要: In accordance with the present invention, there is provided a method for fabricating a contact on an integrated circuit, such as a DRAM. The method includes the following steps. A gate stack is formed on the integrated circuit. A spacer is formed on sidewalls of the gate stack. An insulating film is formed on the integrated circuit. The insulating film is planarized. Finally, a gate contact opening is formed through the planarized insulating film. In one embodiment, the gate contact opening is formed by removing the insulator, spacer and insulating film by etching. In this embodiment, the insulator, spacer and insulating film are etched at substantially similar rates. As a result, the integrated circuit is tolerant of mask misalignments, and does not over-etch field oxide or create silicon nitride slivers. In another embodiment, the planarizing step is performed with chemical mechanical planarization to form a substantially flat topography on the surface of the integrated circuit. Thus, the present invention does not require lithography equipment with a relatively large field of depth. In yet a third embodiment, the method may comprise additional steps, including forming additional dielectric on the integrated circuit. Then, gate and bitline contact openings are formed through the additional dielectric. Finally, gate and bitline contacts are formed in self-alignment to the gate stacks. This embodiment may be implemented by forming the gate and bitline contact openings with an etch that removes the additional dielectric, but does not substantially remove the spacer. As a result, the bitline contact cannot be inadvertently connected to a gate stack that functions as a wordline. This connection might disable the integrated circuit.

    摘要翻译: 根据本发明,提供了一种用于在诸如DRAM的集成电路上制造接触的方法。 该方法包括以下步骤。 在集成电路上形成栅极堆叠。 在栅叠层的侧壁上形成间隔物。 在集成电路上形成绝缘膜。 绝缘膜平坦化。 最后,通过平坦化绝缘膜形成栅极接触开口。 在一个实施例中,通过蚀刻去除绝缘体,间隔物和绝缘膜来形成栅极接触开口。 在该实施例中,以基本相似的速率蚀刻绝缘体,间隔物和绝缘膜。 因此,集成电路容忍掩模未对准,并且不会过度蚀刻场氧化物或产生氮化硅条。 在另一个实施例中,平面化步骤通过化学机械平面化进行,以在集成电路的表面上形成基本平坦的形貌。 因此,本发明不需要具有相当大的深度场的光刻设备。 在第三个实施例中,该方法可以包括额外的步骤,包括在集成电路上形成附加电介质。 然后,通过附加电介质形成栅极和位线接触开口。 最后,栅极和位线触点形成为与栅极堆叠自对准。 该实施例可以通过用蚀刻去除附加电介质但不基本上去除间隔物的栅极和位线接触开口来实现。 因此,位线接触不能无意中连接到用作字线的栅极堆叠。 此连接可能会禁用集成电路。

    Vaccinium plant named ‘CORABLUE’
    18.
    植物专利
    Vaccinium plant named ‘CORABLUE’ 有权
    牛蒡植物名为CORABLUE

    公开(公告)号:USPP22521P2

    公开(公告)日:2012-02-28

    申请号:US12802264

    申请日:2010-06-03

    申请人: David Dickerson

    发明人: David Dickerson

    IPC分类号: A01H5/00

    CPC分类号: A01H5/00

    摘要: A new and distinct Vaccinium spp. cultivar named ‘CORABLUE’ is disclosed, characterized by a compact plant habit, vigorous growth and glossy leaves. The new variety shows tolerance for a wide variety of soil moisture conditions, including drought. The new variety is a Vaccinium, and is normally used as an ornamental garden or landscape plant.

    摘要翻译: 一种新的和不同的牛痘属 披露了名为“CORABLUE”的品种,其特点是植物生长紧密,生长旺盛,叶片光滑。 新品种表现出对各种土壤水分条件的耐受性,包括干旱。 新品种是牛痘,通常用作观赏花园或景观植物。

    Juniperus plant named ‘Newbold’
    19.
    植物专利
    Juniperus plant named ‘Newbold’ 有权
    桧属植物名为Newbold

    公开(公告)号:USPP22088P2

    公开(公告)日:2011-08-23

    申请号:US12592570

    申请日:2009-11-27

    申请人: David Dickerson

    发明人: David Dickerson

    IPC分类号: A01H7/00

    CPC分类号: A01H7/00

    摘要: A new and distinct Juniperus chinensis×virginiana cultivar named ‘NEWBOLD’ is disclosed, characterized by a distinctive blue cast to the foliage, unique spatial spread of the foliage, and a broad spreading habit of the plant canopy. The new variety shows resistance to foliar diseases typical of Juniperus species in a Northern Florida climate. The new variety also shows resistance to foliar damage caused by mites. The new variety is a Juniperus, and is normally used as a garden or landscape plant.

    摘要翻译: 公开了一种名为“NEWBOLD”的新颖而独特的中华ensis藜×维吾尔族植物品种,其特点是植物独特的蓝色植物,叶面独特的空间传播和植物冠层的广泛传播习性。 新的品种在佛罗里达北部气候中表现出对桧属物种典型的叶面疾病的抵抗力。 新品种也表现出抗螨虫引起的叶面损伤。 新品种是桧木,通常用作花园或景观植物。