摘要:
In accordance with the present invention, there is provided a method for fabricating a contact on an integrated circuit, such as a DRAM. The method includes the following steps. A gate stack is formed on the integrated circuit. A spacer is formed on sidewalls of the gate stack. An insulating film is formed on the integrated circuit. The insulating film is planarized. Finally, a gate contact opening is formed through the planarized insulating film. In one embodiment, the gate contact opening is formed by removing the insulator, spacer and insulating film by etching. In this embodiment, the insulator, spacer and insulating film are etched at substantially similar rates. As a result, the integrated circuit is tolerant of mask misalignments, and does not over-etch field oxide or create silicon nitride slivers. In another embodiment, the planarizing step is performed with chemical mechanical planarization to form a substantially flat topography on the surface of the integrated circuit. Thus, the present invention does not require lithography equipment with a relatively large field of depth. In yet a third embodiment, the method may comprise additional steps, including forming additional dielectric on the integrated circuit. Then, gate and bitline contact openings are formed through the additional dielectric. Finally, gate and bitline contacts are formed in self-alignment to the gate stacks. This embodiment may be implemented by forming the gate and bitline contact openings with an etch that removes the additional dielectric, but does not substantially remove the spacer. As a result, the bitline contact cannot be inadvertently connected to a gate stack that functions as a wordline. This connection might disable the integrated circuit.
摘要:
In accordance with the present invention, there is provided a method for fabricating a contact on an integrated circuit, such as a DRAM. The method includes the following steps. A gate stack is formed on the integrated circuit. A spacer is formed on sidewalls of the gate stack. An insulating film is formed on the integrated circuit. The insulating film is planarized. Finally, a gate contact opening is formed through the planarized insulating film. In one embodiment, the gate contact opening is formed by removing the insulator, spacer and insulating film by etching. In this embodiment, the insulator, spacer and insulating film are etched at substantially similar rates. As a result, the integrated circuit is tolerant of mask misalignments, and does not over-etch field oxide or create silicon nitride slivers. In another embodiment, the planarizing step is performed with chemical mechanical planarization to form a substantially flat topography on the surface of the integrated circuit. Thus, the present invention does not require lithography equipment with a relatively large field of depth. In yet a third embodiment, the method may comprise additional steps, including forming additional dielectric on the integrated circuit. Then, gate and bitline contact openings are formed through the additional dielectric. Finally, gate and bitline contacts are formed in self-alignment to the gate stacks. This embodiment may be implemented by forming the gate and bitline contact openings with an etch that removes the additional dielectric, but does not substantially remove the spacer. As a result, the bitline contact cannot be inadvertently connected to a gate stack that functions as a wordline. This connection might disable the integrated circuit.
摘要:
A method of manufacturing semiconductor devices using an improved chemical mechanical planarization process for the planarization of the surfaces of the wafer on which the semiconductor devices are formed. The improved chemical mechanical planarization process includes the formation of a flat planar surface from a deformable coating on the surface of the wafer filling in between the surface irregularities prior to the planarization of the surface through a chemical mechanical planarization process.
摘要:
A process to create a faceted (prograde) profile for an integrated circuit, in which the top corners of a layer disposed over a feature are preferentially etched, thereby creating slopes. The profile which results from the deposit of subsequent layers is more easily etched as a result of the contour imparted by the faceted edges. Since the subsequent layers are placed in the "line of sight" of the etch plasma, there are significantly fewer "stringers."
摘要:
A method of manufacturing semiconductor devices using an improved chemical mechanical planarization process for the planarization of the surfaces of the wafer on which the semiconductor devices are formed. The improved chemical mechanical planarization process includes the formation of a flat planar surface from a deformable coating on the surface of the wafer filling in between the surface irregularities prior to the planarization of the surface through a chemical mechanical planarization process.
摘要:
A process for semiconductor manufacture in which the top corners of conductive features are preferentially etched compared to the etch rate of the vertical and horizontal surfaces, thereby creating a sloped (prograde) profile, i.e., facets. The material removed through the sputter etch process is oxidized and redeposited along the sides of the feature and along the surface of the substrate, thereby improving step coverage when a subsequent dielectric layer is deposited thereon.
摘要:
Methods are provided for forming a contact in an integrated circuit by chemical vapor deposition (CVD). The methods include forming titanium in the contact. One method includes forming titanium by combining a titanium precursor in the presence of hydrogen, H2. Another method includes forming titanium by combining titanium tetrachloride, TiCl4, in the presence of hydrogen. A further method includes forming titanium by combining tetradimethyl amino titanium, Ti(N(CH3)2)4, in the presence of hydrogen.
摘要:
Apparatus having titanium silicide and titanium formed by chemical vapor deposition (CVD) in a contact. The chemical vapor deposition includes forming titanium silicide and/or titanium by combining a titanium precursor in the presence of hydrogen, H2. The chemical vapor deposition may further include forming titanium silicide and/or titanium by combining titanium tetrachloride, TiCl4, in the presence of hydrogen. The chemical vapor deposition may further include forming titanium silicide and/or by combining tetradimethyl amino titanium, Ti(N(CH3)2)4, in the presence of hydrogen. For production of titanium silicide, reaction of the titanium precursor may occur with a silicon precursor or a silicon source occurring as part of the contact. Use of a silicon precursor reduces depletion of a silicon base layer in the contact.
摘要:
A method is provided for forming a contact in an integrated circuit by chemical vapor deposition (CVD). In one embodiment, a titanium precursor and a silicon precursor are contacted in the presence of hydrogen, to form titanium silicide. In another embodiment, a titanium precursor contacts silicon to form to form titanium silicide.
摘要:
A method is provided for forming a contact in an integrated circuit by chemical vapor deposition (CVD). In one embodiment, a titanium precursor and a silicon precursor are contacted in the presence of hydrogen, to form titanium silicide. In another embodiment, a titanium precursor contacts silicon to form to form titanium silicide.