摘要:
A structure for improving the mirror facet cleaving yield of (Ga,Al,In,B)N laser diodes grown on nonpolar or semipolar (Ga,Al,In,B)N substrates. The structure comprises a nonpolar or semipolar (Ga,Al,In,B)N laser diode including a waveguide core that provides sufficient optical confinement for the device's operation in the absence of p-type doped aluminum-containing waveguide cladding layers, and one of more n-type doped aluminum-containing layers that can be used to assist with facet cleaving along a particular crystallographic plane.
摘要:
A method to suppress thermal conductivities of nitride films by using stacking faults and/or nano-scale In-composition fluctuation(s). Therefore, the present invention reduces thermal conductivity of nitride while keeping electrical conductivity high. In addition, In composition fluctuations can enhance the Seebeck coefficient through thermionic emission. The present invention further discloses a nitride based (e.g. GaN) thermoelectric lateral device with a short length.
摘要:
A method to suppress thermal conductivities of nitride films by using stacking faults and/or nano-scale In-composition fluctuation(s). Therefore, the present invention reduces thermal conductivity of nitride while keeping electrical conductivity high. In addition, In composition fluctuations can enhance the Seebeck coefficient through thermionic emission. The present invention further discloses a nitride based (e.g. GaN) thermoelectric lateral device with a short length.
摘要:
Ohmic cathode electrodes are formed on the backside of nonpolar m-plane (1-100) and semipolar (20-21) bulk gallium nitride (GaN) substrates. The GaN substrates are thinned using a mechanical polishing process. For m-plane GaN, after the thinning process, dry etching is performed, followed by metal deposition, resulting in ohmic I-V characteristics for the contact. For (20-21) GaN, after the thinning process, dry etching is performed, followed by metal deposition, followed by annealing, resulting in ohmic I-V characteristics for the contact as well.
摘要:
A power window switch has a case, a substrate disposed in the case, a window operation knob disposed on the case, a window lock button disposed on a front side of the window operation knob on the case, a window operation switch mechanism disposed in the case and activated in accordance with an operation of the window operation knob, a window lock switch mechanism disposed in the case and activated in accordance with an operation of the window lock button, and a connector having a terminal with a first terminal end protruding from the case and a second terminal end connected to the substrate. The window lock switch mechanism includes two conductive plate springs, and a pressing unit for pressing the plate springs.
摘要:
A fuel cell stack is comprised of a plurality of power generating units which are stacked along the horizontal direction. A corrugated passage groove having a shape corresponding to the shape of the underside surface of a corrugated passage groove of a first fuel gas passage is formed in a surface of a first metal separator. A corrugated passage groove having a shape corresponding to the shape of the underside surface of a corrugated passage groove of a second oxidant gas passage is formed in a surface of a third metal separator. The corrugated passage grooves overlap one another to define a refrigerant passage. An oxidant gas inlet port and a fuel gas inlet port are provided in the upper portion of the power generating unit, and an oxidant gas outlet port and a fuel gas outlet port are provided in the lower portion of the power generating unit. A refrigerant inlet port and a refrigerant outlet port are formed in each of the left and right portions of the power generating unit.
摘要:
The semiconductor device according to the present invention includes a semiconductor layer containing plural band gap change thin films in which a band gap is continuously monotonously changed in a laminating direction. Therefore, the present invention provides a semiconductor device having high reliability and low electric resistance.
摘要:
Provided is a laser light emitting device that has light sources of multiple wavelengths including an oscillation wavelength in a green region and the like, and that can be miniaturized. A metal wiring 4 is formed on a supporting substrate 5. A green LD 1 and a red LD 2 are bonded to the metal wiring 4. Each of the green LD 1 and the red LD 2 is a laser diode element formed of a semiconductor having a layered structure. One of a positive electrode and a negative electrode of the element is bonded to the metal wiring 4, and the other electrode is connected to a lead wire 6 or a lead wire 7. The green LD 1 is formed of a GaN-based semiconductor laser diode having a nonpolar plane or a semipolar plane as a main surface for crystal growth. The red LD 2 is formed of an AlInGaP-based semiconductor laser diode.
摘要:
A nitride semiconductor device according to the present invention includes: a nitride semiconductor laminated structure comprising a first layer made of a Group III nitride semiconductor, a second layer laminated on the first layer and made of an Al-containing Group III nitride semiconductor with a composition that differs from that of the first layer, the nitride semiconductor laminated structure comprising a stripe-like trench exposing a lamination boundary between the first layer and the second layer; a gate electrode formed to oppose the lamination boundary; and a source electrode and a drain electrode, having the gate electrode interposed therebetween, each connected electrically to the second layer.
摘要:
An MIS field effect transistor includes a nitride semiconductor multilayer structure including a first group III-V nitride semiconductor layer of a first conductivity type, a second group III-V nitride semiconductor layer of a second conductivity type which is arranged on the first group III-V nitride semiconductor layer, and a third group III-V nitride semiconductor layer of the first conductivity type which is arranged on the second group III-V nitride semiconductor layer. A gate insulating film is formed on a wall surface ranging over the first, second and third group III-V nitride semiconductor layers so that the film stretches over the first, second and third group III-V nitride semiconductor layer. A gate electrode made of a conductive material is formed so that it faces the second group III-V nitride semiconductor layer via the gate insulating film. A drain electrode is provided to be electrically connected to the first group III-V nitride semiconductor layer, and a source electrode is provided to be electrically connected to the third group III-V nitride semiconductor layer.