摘要:
The apparatus is adapted to deflect a light beam from a laser light source for each of the color components by means of a deflection mirror surface which oscillates, thereby making the light beam reciprocally scan in a main scanning direction. In this apparatus, however, only a light beam SL which scans in a first direction (+X) of the main scanning direction is irradiated in an effective image region on a photosensitive member, so as to form a latent image thereon. The resultant latent image is developed to form a toner image. Since image formation is performed using only the light beam SL which scans in the first direction (+X), the images may be formed at the consistent density irrespective of the image types. Furthermore, the scanning directions of the light beams SL for all the color components are uniformly defined to be the first direction (+X), so that the toner images of the respective colors may maintain the consistent density.
摘要:
The apparatus is adapted to deflect a light beam from a laser light source for each of the color components by means of a deflection mirror surface which oscillates, thereby making the light beam reciprocally scan in a main scanning direction. In this apparatus, however, only a light beam SL which scans in a first direction (+X) of the main scanning direction is irradiated in an effective image region on a photosensitive member, so as to form a latent image thereon. The resultant latent image is developed to form a toner image. Since image formation is performed using only the light beam SL which scans in the first direction (+X), the images may be formed at the consistent density irrespective of the image types. Furthermore, the scanning directions of the light beams SL for all the color components are uniformly defined to be the first direction (+X), so that the toner images of the respective colors may maintain the consistent density.
摘要:
An image forming apparatus, includes: a latent image carrier whose surface includes an effective image region spanning across a predetermined width in a main scanning direction and is driven in a sub scanning direction approximately orthogonal to the main scanning direction; a latent image former which has a light source and a deflection mirror oscillating, and deflects a light beam from the light source using the deflection mirror so as to scan the effective image region with the deflected light beam; and a scanning mode controller which switches selectively between a single-side scanning mode and a double-side scanning mode, the single-side scanning mode being a mode in which the light beam is scanned only in a first direction included in the main scanning direction, the double-side scanning mode being a mode in which the light beam is scanned in both the first direction and a second direction opposite to the first direction, wherein a condition to form latent images on the latent image carrier in the single-side scanning mode is different from a condition to form latent images on the latent image carrier in the double-side scanning mode.
摘要:
An image forming method using an image forming apparatus including: a latent image carrier whose surface is driven in a sub scanning direction; a deflector which scans a beam spot reciprocally in a main scanning direction substantially perpendicular to the sub scanning direction on the surface of the latent image carrier in the use of an oscillating deflect mirror so as to form spot latent images each of which formed on a pixel; developer which develops each of the spot latent images as a pixel-dot, the method includes of: halftoning for a tone reproduction in which a halftone-dot constituted by the pixel-dot(s) is formed on a cell consisting plural pixels according to a fattening type threshold matrix, wherein a plurality of cells are contiguously arranged in the main scanning direction so as to form a plurality of contiguous locations at each of which the cells adjoin mutually in the main scanning direction, each cell includes a larger-than-four even number of pixels in the sub scanning direction, and the cells, which mutually adjoin at a particular contiguous location out of the plurality of contiguous locations, are mutually shifted by an odd number of pixel(s) in the sub scanning direction.
摘要:
A backlight device includes a first substrate having optical transparency and having first and second surfaces opposite to each other. An LED thin-film is fixed to the first surface of the first substrate. An anode electrode and a cathode electrode are formed on the LED thin-film. An anode driver IC and a cathode driver IC are provided for driving the LED thin-film to emit light. An anode wiring and a cathode wiring are provided on the first surface of the first substrate. A second substrate has optical transparency, and has first and second surfaces opposite to each other. The second surface of the second substrate faces the first surface of the first substrate. A reflection film is provided on the first surface of the second substrate. A light diffusion plate is provided so as to face the second surface of the first substrate and has a function to diffuse incident light.
摘要:
An LED backlight device includes a substrate having an optical transparency and an LED thin-film layered structure fixed to a first surface of the substrate. The LED thin-film layered structure is formed of epitaxially grown inorganic material layers as a P-N junction device. An anode electrode and a cathode electrode are formed on the LED thin-film layered structure. An anode driver IC and a cathode driver IC are provided for driving the LED thin-film layered structure. A wiring structure electrically connects the anode driver IC and the anode electrode of the LED thin-film layered structure and electrically connects the cathode driver IC and the cathode electrode of the LED thin-film layered structure. A phosphor is formed on the second surface of the substrate opposite to the first surface.
摘要:
An object of the present invention is to obtain a clear absorbed current image without involving the difference in gain of amplifier between inputs, from absorbed currents detected by using a plurality of probes and to improve measurement efficiency.In the present invention, a plurality of probes are brought in contact with a specimen. While irradiating the specimen with an electron beam, currents flowing in the probes are measured. Signals from at least two probes are input to a differential amplifier. An output of the differential amplifier is amplified. On the basis of the amplified output and scanning information of the electron beam, an absorbed current image is generated. According to the invention, a clear absorbed current image can be obtained without involving the difference in gain of amplifier between inputs. Thus, measurement efficiency in a failure analysis of a semiconductor device can be improved.
摘要:
A backlight device includes a first substrate having optical transparency and having first and second surfaces opposite to each other. An LED thin-film is fixed to the first surface of the first substrate. An anode electrode and a cathode electrode are formed on the LED thin-film. An anode driver IC and a cathode driver IC are provided for driving the LED thin-film to emit light. An anode wiring and a cathode wiring are provided on the first surface of the first substrate. A second substrate has optical transparency, and has first and second surfaces opposite to each other. The second surface of the second substrate faces the first surface of the first substrate. A reflection film is provided on the first surface of the second substrate. A light diffusion plate is provided so as to face the second surface of the first substrate and has a function to diffuse incident light.
摘要:
Problems encountered in the conventional inspection method and the conventional apparatus adopting the method are solved by the present invention using an electron beam by providing a novel inspection method and an inspection apparatus adopting the novel method which are capable of increasing the speed to scan a specimen such as a semiconductor wafer.The inspection novel method provided by the present invention comprises the steps of: generating an electron beam; converging the generated electron beam on a specimen by using an objective lens; scanning the specimen by using the converged electron beam; continuously moving the specimen during scanning; detecting charged particles emanating from the specimen at a location between the specimen and the objective lens and converting the detected charged particles into an electrical signal; storing picture information conveyed by the electrical signal; comparing a picture with another by using the stored picture information; and detecting a defect of the specimen.
摘要:
An electrostatic latent image is formed on an image carrier. A first roller is opposed to the image carrier with a gap in between. A second roller is in contact with the first roller such that toner of a one-component type is supplied onto the image carrier by way of the first roller to develop the electrostatic latent image as a visible toner image. A single power source supplies a bias voltage in which an AC voltage is superposed on a DC bias voltage. The bias voltage is supplied to the first roller through a first path and to the second roller through a second path. A resistor is provided on the first path between the first roller and a branching point of the first path and the second path.