摘要:
A method of repairing a phase shift mask includes exposing upper and side surfaces of the phase shift pattern of the mask, selectively forming a passivation layer on the surfaces of the exposed phase shift patterns, and then cleaning the phase shift mask on which the passivation layers are formed. The repairing of the phase shift mask is carried out in the midst of a series of photolithographic exposure processes in which the phase shift mask is used to transfer an image to a photoresist layer or layers. After the photomask is cleaned, a determination is made as to whether the transmittance of the phase shift pattern is above a threshold value.
摘要:
A method of forming a layout of a photomask includes receiving a layout of a mask pattern, obtaining image parameters of a two-dimensional (2D) layout mask from a simulation, obtaining image parameters of a three-dimensional (3D) layout mask from a simulation, and obtaining differences between the image parameters of the 2D and 3D masks. The differences between the image parameters of the 2D and 3D masks can be compensated by convolving a probability function with respect to an open area, represented by a visible kernel function, with a mask function to produce a first function, convolving a probability function with respect to a blocked area, represented by a visible kernel function, with the mask function to produce a second function, and summing the first function and the second function to produce a compensated vector. The layout of the mask pattern can be corrected using the compensated vector.
摘要:
A photo-mask has a main mask pattern in a main region, a density correcting pattern in a peripheral region, and an exposure blocking pattern interposed between the main mask pattern and density correcting pattern. The exposure blocking pattern is configured to prevent the density correcting pattern from being transcribed to a wafer. The photo-mask is made by providing mask substrate on which a mask layer and a photoresist layer are disposed, providing design data that specifies at least the main mask pattern, and using the design data to derive exposure data that controls the exposure of the photoresist layer. The exposure data includes information that specifies the exposure blocking pattern, the portion of the peripheral region to be occupied by the density correcting pattern, and the pattern density of that portion of the peripheral region to be occupied by the density correcting pattern.
摘要:
A system for measuring dimension of photomasks comprises a light source emitting measuring light having a wavelength, a transmission detector for receiving the measuring light, a stage on which a photomask having circuit patterns is placed, the stage being disposed between the light source and the transmission detector, and a controller having a dimension-deciding algorithm to determine a dimension of the circuit patterns from a spectroscopic characteristic of the received measuring light, the controller being connected to the transmission detector.
摘要:
A mask for use in measuring flare produced by a projection lens of a photolithography system, a method of manufacturing the mask, a method of identifying a flare-affected region on a wafer, and a method for correcting for the flare to produce photoresist patterns of desired line widths are provided. A first photolithographic process is performed to form photoresist patterns on a test wafer using a mask including a light shielding region having a plurality of light transmission patterns and a light transmission region, and the photoresist patterns formed by light passing through the light transmission patterns of the light shielding region are compared to the photoresist patterns formed by light passing through the light transmission region. The amount of flare produced by the projection lens is quantified using the results of the comparison, and thus it is possible to identify a flare-affected region on the wafer. In addition, it is possible to form uniform photoresist patterns on the wafer by determining the open ratio of the flare-affected region and calculating an effective amount of the flare in the flare-affected region from the amount of flare of the lens and the open ratio. More specifically, a mask is produced in which the line widths of mask patterns are configured, i.e., corrected compared to the first mask, taking into consideration the effective amount of the flare.
摘要:
Provided methods for forming a pattern using electron beam and cell masks for electron beam lithography. The methods may include forming a resist layer on a substrate, the resist layer including a first region, a second region surrounding the first region, and a third region surrounding the second region. The second may be irradiated with electron beam at a first dose, and the third region may be irradiated with an electron beam at a second dose less than the first dose. The cell mask may include a mask substrate and a shielding region disposed on the mask substrate. A transmitting region may extend a distance from the shielding region. A gray pattern region may be disposed around the transmitting region. The gray pattern region may include patterns having a pitch smaller than a resolution limit.
摘要:
A system and method for fabricating a photo mask are provided. The method includes preparing weak point data based on mask layout data, fabricating a photo mask based on the mask layout data and extracting critical point data by analyzing the aerial image of the fabricated photo mask based on the weak point data.
摘要:
This disclosure provides a method for manufacturing an optical proximity correction (OPC) mask, the method using an electron beam, and an OPC mask manufactured using the method. In the method, a mask is placed on a holder and a mask pattern for a photolithography process formed on the mask by illuminating the mask with an electron beam. A desired pattern is formed on the mask and an amended pattern is formed in consideration of a Kennel Effect by changing the size of the electron beam in a portion of the desired pattern where the Kennel Effect occurs. With the method, an amended pattern is made by defocusing an electron beam to change the size of the electron beam. Accordingly, an additional large amended pattern file is not required and the CPU memory for an apparatus using this method is not overloaded. This method thereby simplifies the process of manufacturing an OPC mask and complicated amended patterns are easily produced.
摘要:
A photomask for use in photolithography has substrate, a main pattern at one side of the substrate, and a transparency-adjusting layer at the other side of the substrate. The transparency-adjusting layer has a characteristic that allows it to change the intensity of the illumination incident on the main pattern during the exposure process accordingly. In manufacturing the photomask, a first exposure process is carried out on a wafer using just the substrate and main pattern. The critical dimensions of elements of the pattern formed on the wafer as a result of the first exposure process are measured. Differences between these critical dimensions and a reference critical dimension are then used in designing a layout of the transparency-adjusting layer in which the characteristic of the layer is varied to compensate for such differences.
摘要:
A mask for use in measuring flare produced by a projection lens of a photolithography system, a method of manufacturing the mask, a method of identifying a flare-affected region on a wafer, and a method for correcting for the flare to produce photoresist patterns of desired line widths are provided. A first photolithographic process is performed to form photoresist patterns on a test wafer using a mask including a light shielding region having a plurality of light transmission patterns and a light transmission region, and the photoresist patterns formed by light passing through the light transmission patterns of the light shielding region are compared to the photoresist patterns formed by light passing through the light transmission region. The amount of flare produced by the projection lens is quantified using the results of the comparison, and thus it is possible to identify a flare-affected region on the wafer. In addition, it is possible to form uniform photoresist patterns on the wafer by determining the open ratio of the flare-affected region and calculating an effective amount of the flare in the flare-affected region from the amount of flare of the lens and the open ratio. More specifically, a mask is produced in which the line widths of mask patterns are configured, i.e., corrected compared to the first mask, taking into consideration the effective amount of the flare.