Abstract:
Production of middle distillates from a feedstock produced by Fischer-Tropsch synthesis and containing oxygenated compounds: a) catalytic hydrotreating; b) hydroisomerization/hydrocracking at least a part of liquid and gaseous effluent originating from a); c) gas/liquid separation of the stream from b) into a gaseous fraction comprising predominantly hydrogen, a hydroisomerized/hydrocracked organic liquid fraction and an aqueous fraction; d) fractionation of the organic liquid fraction in c) to obtain at least one fraction of middle distillates; and e) catalytic methanation of CO and CO2 on at least a part of said gaseous fraction in c) before hydrotreating a), and/or on at least a part of the liquid and gaseous effluent originating from a) in which the hydrogen in a) is obtained at least partly from the gaseous fraction separated in c).
Abstract:
The present invention relates to a method for preparing a bifunctional catalyst using an IZM-2 zeolite, a hydrogenating function and a matrix. The preparation method according to the invention uses a specific heat treatment of the catalyst which improves its selectivity for the isomerisation of paraffinic feedstocks in middle distillates.
Abstract:
The present invention relates to a process for preparing a difunctional catalyst using a zeolite IZM-2, a hydrogenating function and a matrix. The preparation process according to the invention simultaneously allows preferential localization of said hydrogenating function on the surface and/or in the microporosity of zeolite IZM-2 and homogeneous distribution of the hydrogenating function in the catalyst and preferably on zeolite IZM-2 by means of using an impregnation solution comprising specific noble metal precursors combined with the presence of ammonium salts, with a quite precise ratio of ammonium salt to noble metal.
Abstract:
A catalyst is described comprising at least one IZM-2 zeolite containing silicon atoms and aluminium atoms, at least one matrix and at least one metal from group VIII of the periodic classification of the elements, the zeolite having a ratio between the number of moles of silicon and the number of moles of aluminium in the range 60 to 150. Said catalyst is used in a process for the isomerization of an aromatic feed comprising at least one compound containing eight carbon atoms per molecule.
Abstract:
The invention relates to a process for conversion of a paraffinic feedstock that has a number of carbon atoms of between 9 and 25, whereby said paraffinic feedstock is produced starting from renewable resources, employing a catalyst that comprises at least one hydrogenating-dehydrogenating metal that is selected from the group that is formed by the metals of group VIB and group VIII of the periodic table, taken by themselves or in a mixture, and a substrate that comprises at least one IZM-2 zeolite and at least one binder, with said process being carried out at a temperature of between 150 and 500° C., at a pressure of between 0.1 MPa and 15 MPa, at an hourly volumetric flow rate of between 0.1 and 10 h−1, and in the presence of a total quantity of hydrogen mixed with the feedstock such that the hydrogen/feedstock ratio is between 70 and 2,000 Nm3/m3 of feedstock.
Abstract:
This invention describes a process for the production of middle distillates comprising at least one hydrocracking stage that oligomerizes a paraffinic feedstock produced by Fischer-Tropsch synthesis, said process using a catalyst that comprises at least one hydrogenating-dehydrogenating metal that is selected from the group that is formed by the metals of group VIB and group VIII of the periodic table, by themselves or in a mixture, and a substrate that comprises a beta zeolite in the form of crystallites with a mean size that is less than 100 nm dispersed in at least one porous mineral matrix, whereby said beta zeolite has a mesopore volume of less than 0.4 ml/g.