Abstract:
Some embodiments relate to a magnetoresistive sensor element comprising a magnetoresistive strip. The magnetoresistive strip includes a first linear segment, and a second linear segment arranged in series with the first linear segment. The second linear segment adjoins the first linear segment at a first inner corner corresponding to a first obtuse angle having a first magnitude. The magnetoresistive strip also includes a third linear segment arranged in series with the first and second linear segments, and a fourth linear segment arranged in series with the first, second, and third linear segments. The fourth linear segment adjoins the third linear segment at a second inner corner corresponding to a second obtuse angle having a second magnitude. Te second magnitude differs from the first magnitude.
Abstract:
A device according to an embodiment may comprise a magneto-resistive structure comprising a magnetic free layer with a spontaneously generated in-plane closed flux magnetization pattern and a magnetic reference layer having a non-closed flux magnetization pattern.
Abstract:
A magnetoresistive sensor has a sensor plane in which the magnetoresistive sensor is sensitive to a magnetic field. The magnetoresistive sensor includes a reference layer having a reference magnetization that is fixed and that is aligned with an in-plane axis of the sensor plane; and a magnetic free layer disposed proximate to the reference layer, the magnetic free layer having a free layer magnetization aligned along an out-of-plane axis that is out-of-plane to the sensor plane. The free layer magnetization is configured to tilt away from the out-of-plane axis and towards the sensor plane in a presence of an external in-plane magnetic field.
Abstract:
Embodiments relate to magnetoresistive sensors suitable for both angle and field strength sensing. In an embodiment, a sensor comprises two different magnetoresistive (xMR) sensor components for sensing two different aspects or characteristics of a magnetic field. In an embodiment, the first xMR sensor component is configured for magnetic field angle or rotation sensing, while the second xMR sensor component is configured for magnetic field strength sensing. In an embodiment, the second xMR sensor component is configured for magnetic field strength sensing in two dimensions. The second xMR sensor therefore can determine, in embodiment, whether the field sensed with respect to angle or rotation by the first xMR sensor component is of sufficient strength or meets a minimum magnitude threshold. If the minimum threshold is not met, an alarm or alert can be provided.
Abstract:
Embodiments relate to xMR sensors, sensor elements and structures, and methods. In an embodiment, a sensor element comprises a non-elongated xMR structure; and a plurality of contact regions formed on the xMR structure spaced apart from one another such that a non-homogeneous current direction and current density distribution are induced in the xMR structure when a voltage is applied between the plurality of contact regions.
Abstract:
In the method of manufacturing a magnetoresistive sensor module, at first a composite arrangement out of a semiconductor substrate and a metal-insulator arrangement is provided, wherein a semiconductor circuit arrangement is integrated adjacent to a main surface of the semiconductor substrate into the same, wherein the metal-insulator arrangement is arranged on the main surface of the semiconductor substrate and comprises a structured metal sheet and insulation material at least partially surrounding the structured metal sheet, wherein the structured metal sheet is electrically connected to the semiconductor circuit arrangement. Then, a magnetoresistive sensor structure is applied onto a surface of the insulation material of the composite arrangement, and finally an electrical connection between the magnetoresistive sensor structure and the structured metal sheet is established, so that the magnetoresistive sensor structure is connected to the integrated circuit arrangement.
Abstract:
A bridge offset voltage compensation method and circuit having a bridge circuit and a tunnel magnetoresistance (TMR) resistor cascade. The bridge circuit includes a branch circuit. The TMR resistor cascade is coupled in series with the branch circuit, and is configured to provide a resistance to compensate for a bridge offset voltage of the bridge circuit.
Abstract:
An XMR-sensor and method for manufacturing the XMR-Sensor are provided. The XMR-sensor includes a substrate, a first contact, a second contact and an XMR-structure. The substrate includes a first main surface area and a second main surface area. The first contact is arranged at the first main surface area and the second contact is arranged at the second main surface area. The XMR-structure extends from the first contact to the second contact such that an XMR-plane of the XMR-structure is arranged along a first direction perpendicular to the first main surface area or the second main surface area.
Abstract:
A magnetoresistive device includes a substrate and an electrically insulating layer arranged over the substrate. The magnetoresistive device further includes a first free layer embedded in the electrically insulating layer and a second free layer embedded in the electrically insulating layer. The first free layer and the second free layer are separated by a portion of the electrically insulating layer.
Abstract:
A magnetoresistive sensor includes a first non-magnetic layer, a second non-magnetic layer, and a magnetic free bi-layer. The magnetic free bi-layer is disposed between first non-magnetic layer and the second non-magnetic layer, the magnetic free bi-layer including a first magnetic free layer coupled to a second magnetic free layer. The first magnetic free layer is coupled to the first non-magnetic layer, and the second magnetic free layer is coupled to the second non-magnetic layer. The second non-magnetic layer comprises a non-magnetic material having an atomic radius within 10% of an atomic radius of at least one of the first magnetic free layer and the second magnetic free layer.