Abstract:
A method of manufacturing a battery includes defining an active region and a bonding area in a first main surface of a first semiconductor substrate, forming a first ditch in the bonding area, forming an anode at the first semiconductor substrate in the active region, and forming a cathode at a carrier comprising an insulating material. The method further includes stacking the first semiconductor substrate and the carrier so that the first main surface of the first semiconductor substrate is disposed on a side adjacent to a first main surface of the carrier, a cavity being formed between the first semiconductor substrate and the carrier, and forming an electrolyte in the cavity.
Abstract:
A semiconductor device includes a plurality of trenches extending into a semiconductor substrate. Each trench comprises a plurality of enlarged width regions distributed along the trench. At least one electrically conductive trench structure is located in each trench. The semiconductor device comprises an electrically insulating layer arranged between the semiconductor substrate and an electrode structure. The semiconductor device comprises a vertical electrically conductive structure extending through the electrically insulating layer. The vertical electrically conductive structure forms an electrically connection between the electrode structure and an electrically conductive trench structure located in a first trench of at a first enlarged width region. The electrically insulating layer is arranged between a second enlarged width region of the plurality of enlarged width regions of the first trench and an electrode structure above the second enlarged width region without any vertical electrical connections through the electrically insulating layer at the second enlarged width region.
Abstract:
Embodiments provide a battery cell including a porous membrane, the porous membrane including transformed semiconductor material. The porous membrane separates a first half-cell from a second half-cell of the battery cell. The porous membrane comprises channels allowing ions and/or an electrolyte to move between the first half-cell and the second half-cell.
Abstract:
A method of manufacturing a battery includes introducing a suspension comprising a solvent and fibers into a cavity for housing an electrolyte, drying the solvent, filling the electrolyte into the cavity, and closing the cavity.
Abstract:
In a method of processing a substrate in accordance with an embodiment, a trench may be formed in the substrate, a stamp device may be disposed at least in the trench; at least one part of the trench that is free from the stamp device may be at least partially filled with trench filling material; and the stamp device may be removed from the trench.
Abstract:
In a method of processing a substrate in accordance with an embodiment, a trench may be formed in the substrate, imprint material may be deposited at least into the trench, the imprint material in the trench may be embossed using a stamp device, and the stamp device may be removed from the trench.
Abstract:
A self powered memory system is disclosed. The system includes a volatile supply component, a battery component, a switch component, and a volatile memory component. The volatile supply component is configured to provide a time varying supply. The battery component is configured to generate a non-volatile supply. The switch component is configured to generate a persistent supply from the time varying supply and the non-volatile supply. The volatile memory component is configured to maintain data by using the persistent supply.
Abstract:
Embodiments provide a battery cell including a porous membrane, the porous membrane including transformed semiconductor material. The porous membrane separates a first half-cell from a second half-cell of the battery cell. The porous membrane comprises channels allowing ions and/or an electrolyte to move between the first half-cell and the second half-cell.
Abstract:
In a method of processing a substrate in accordance with an embodiment, a trench may be formed in the substrate, imprint material may be deposited at least into the trench, the imprint material in the trench may be embossed using a stamp device, and the stamp device may be removed from the trench.
Abstract:
A battery electrode in accordance with various embodiments may include: a substrate including a surface configured to face an ion-carrying electrolyte; and a first diffusivity changing region at a first portion of the surface, wherein the first diffusivity changing region is configured to change diffusion of ions carried by the electrolyte into the substrate, and wherein a second portion of the surface is free from the first diffusivity changing region.