Abstract:
Techniques related to wireless communication of an input device are described herein. An apparatus may include a display at the input device, a wireless transmission architecture, and a wireless receiver. The wireless transmission architecture is to broadcast a signal to the display, and wireless receiver to receive the broadcast signal at the display. The broadcast signal is configured to provide a power signal to initiate operations of the display, a data signal to provide content to be displayed at the display, or any combination thereof.
Abstract:
This disclosure describes systems, methods, and apparatus related to near field communication (NFC) detection. A device may determine a first device in proximity to a charging area of the device. The device may detect a presence of a first NFC device in proximity to the charging area of the device. The device may determine the first NFC device is associated with the first device. The device may determine to transition the device to one or more operating modes based at least in part on the presence of the first NFC device.
Abstract:
Described herein are architectures, platforms and methods for dynamic amplification/boosting of near field communications (NFC) antenna transmission power in a device during NFC related functions that require increase in an NFC antenna transmission power such as a payment transaction. For example, to comply with Europay MasterCard and Visa (EMVco) standards with regard to higher NFC antenna transmission power during the EMVco transactions, the NFC antenna transmission power may be dynamically controlled to maximize efficiency of a battery/power supply of the device.
Abstract:
Techniques of magnetic field distribution are described herein. The techniques may include forming a wireless charging component including a driving coil to receive a driven current generating a magnetic field. An outer turn of a parasitic coil may be formed, wherein the outer turn is adjacent to the driving coil. An inner turn of the parasitic coil may be formed, wherein an inductive coupling between the driving coil and the parasitic coil generates a redistribution of a portion of the magnetic field at the inner turn.
Abstract:
An antenna element forms a ring slot antenna comprising a first slot and second slot. The antenna element is located on a first surface of a conductive chassis that encases a body or a volume for wireless communication signals to be received or transmitted. A coupling component is located on an opposite side of the conductive chassis and behind the antenna element. The coupling component facilitates a coupling between a communication component and the antenna element as a function of the orientation and geometric shape of the coupling component to facilitate different resonant frequencies via the first and second slots of the antenna element.
Abstract:
Embodiments of systems and methods for providing in-mold laminate antennas are generally described herein. Other embodiments may be described and claimed.
Abstract:
An antenna element forms a ring slot antenna comprising a first slot and second slot. The antenna element is located on a first surface of a conductive chassis that encases a body or a volume for wireless communication signals to be received or transmitted. A coupling component is located on an opposite side of the conductive chassis and behind the antenna element. The coupling component facilitates a coupling between a communication component and the antenna element as a function of the orientation and geometric shape of the coupling component to facilitate different resonant frequencies via the first and second slots of the antenna element.
Abstract:
Embodiments of systems and methods for providing in-mold laminate antennas are generally described herein. Other embodiments may be described and claimed.