Abstract:
Embodiments of a network User Equipment (nUE), wearable User Equipment (wUE), and methods for sidelink communication are generally described herein. The nUE may transmit a control channel that allocates a subframe as either a downlink subframe or an uplink subframe for a sidelink communication between the nUE and a wearable User Equipment (wUE). When the control channel allocates the subframe as a downlink subframe, the nUE may contend for access to channel resources. The contention may include transmission of a transmitter resources acquisition and sounding (TAS) channel in a physical resource block (PRB) and an attempted detection of a receiver resources acquisition and sounding (RAS) channel from the wUE in the PRB. When the control channel allocates the subframe as an uplink subframe, the wUE may contend for access to the channel resources.
Abstract:
A method for determining a precoding matrix for a MIMO transmitter based on a weighted MMSE algorithm is disclosed. A precoding module identically transforms a first matrix expression into a second matrix expression. The first matrix expression comprises a matrix inversion operation of a quadratic matrix having a rank equal to a number of antennas of the MIMO transmitter. The second matrix expression comprises a matrix inversion operation of a quadratic matrix having a rank equal to a number of receivers scheduled for the MIMO transmitter.
Abstract:
Systems, methods, and devices for controlling transport of ratelessly coded messages are disclosed herein. User equipment (UE) may be configured to receive a data object using a plurality of radios having distinct radio protocols. The data object may divided into a plurality of segments, and the segments may be encoded with a random linear network code before transmission. The random linear network code may permit the UE to reassemble each segment from any large enough set of encoded packets. The UE may use delivery control messages with very low overhead to control the flow of packets for each radio. The UE may control the number of packets received for each segment without specifying which particular packets should be sent. The transmitters may transmit the packets with very little overhead, and encoding information for the packets may be included in the packets in a compact form.
Abstract:
Embodiments of the present disclosure describe systems, devices, and methods for preprocessing in a base station of a multiple-input multiple-output (MIMO) wireless system. In embodiments, remote radio unit (RRU) circuitry may control radio communication related to the MIMO wireless system, including applying a user equipment (UE)-specific spatial filter.
Abstract:
An uplink feedback channel reporting method is disclosed for using the primary and secondary fast feedback channels to efficiently report the channel quality, MIMO feedback, and CQI types of data from a mobile station to a base station. The reporting method reports regular information periodically and non-regular information on demand.
Abstract:
Systems and methods of providing communications between UEs are generally described. A notification resource indicating subsequent transmission of a discovery message is transmitted from a UE to another UE using a discovery ID selected from a limited number of discovery IDs stored in the other UE. The other UE transmits a random access request to the UE having a temporary ID. The UE may not respond if the temporary ID is already used or may transmit data transmission information scrambled by the temporary ID. The other UE transmits a contention resolution PDU to the UE and may receive an ACK to indicate ID contention is not present, or either no response or a NACK to indicate the presence of ID contention. The other UE may either select a new temporary ID or use a backoff timer to retransmit the random access request at a random time.
Abstract:
Systems and methods of providing DMRS for a UE are generally described. The DMRS locations in a resource unit of a Physical Resource Allocation of a shared channel are randomly determined, and the DMRS sequences randomly generated before transmission from a master UE to a wearable UE. The DMRS locations are disposed on different subcarriers and symbols in the resource unit and are repeated every k subframes or m resource units within the same subframe. In situations in which the collision/contention probability is relatively small, DMRS in control channels may be used rather than in the shared data channel.
Abstract:
Embodiments of methods and apparatus for providing downlink channel parameters determination for downlink channels associated with a multiple-input-multiple-output (MIMO) system are generally described herein. Other embodiments may be described and claimed.