Abstract:
An integrated circuit structure may be formed having a substrate, at least one integrated circuit device embedded in and electrically attached to the substrate, and at least one heat transfer fluid conduit extending through the substrate, wherein the heat transfer fluid conduit is electrically attached to the at least one integrated circuit device. In one embodiment, the at least one heat transfer fluid conduit is a power transfer route for the at least one integrated circuit device.
Abstract:
Device package and a method of forming a device package are described. The device package includes an interposer with interconnects on an interconnect package layer and a conductive layer on the interposer. The device package has dies on the conductive layer, where the package layer includes a zero-misalignment two-via stack (ZM2VS) and a dielectric. The ZM2VS directly coupled to the interconnect. The ZM2VS further includes the dielectric on a conductive pad, a first via on a first seed, and first seed on a top surface of the conductive pad, where the first via extends through dielectric. The ZM2VS also has a conductive trace on dielectric, and a second via on a second seed, the second seed is on the dielectric, where the conductive trace connects to first and second vias, where second via connects to an edge of conductive trace opposite from first via.
Abstract:
Composite IC chip including a chiplet embedded within metallization levels of a host IC chip. The chiplet may include a device layer and one or more metallization layers interconnecting passive and/or active devices into chiplet circuitry. The host IC may include a device layer and one or more metallization layers interconnecting passive and/or active devices into host chip circuitry. Features of one of the chiplet metallization layers may be directly bonded to features of one of the host IC metallization layers, interconnecting the two circuitries into a composite circuitry. A dielectric material may be applied over the chiplet. The dielectric and chiplet may be thinned with a planarization process, and additional metallization layers fabricated over the chiplet and host chip, for example to form first level interconnect interfaces. The composite IC chip structure may be assembled into a package substantially as a monolithic IC chip.
Abstract:
Embodiments include a mixed hybrid bonding structure comprising a composite dielectric layer, where the composite dielectric layer comprises an organic dielectric material having a plurality of inorganic filler material. One or more conductive substrate interconnect structures are within the composite dielectric layer. A die is on the composite dielectric layer, the die having one or more conductive die interconnect structures within a die dielectric material. The one or more conductive die interconnect structures are directly bonded to the one or more conductive substrate interconnect structures, and the inorganic filler material of the composite dielectric layer is bonded to the die dielectric material.
Abstract:
Techniques and mechanisms for providing at a packaged device an integrated circuit (IC) chip and a chiplet, wherein memory resources of the chiplet are accessible by a processor core of the IC chip. In an embodiment, a hardware interface of the packaged device includes first conductive contacts at a side of the chiplet, wherein second conductive contacts of the hardware interface are electrically interconnected to the IC chip each via a respective path which is independent of the chiplet. In another embodiment, one or more of the first conductive contacts are configured to deliver power, or communicate a signal, to a device layer of one of the IC chip or the chiplet.
Abstract:
An electronic interposer may be formed comprising an upper section, a lower section and a middle section. The upper section and the lower section may each have between two and four layers, wherein each layer comprises an organic material layer and at least one conductive route comprising at least one conductive trace and at least one conductive via. The middle section may be formed between the upper section and the lower section, wherein the middle section comprises up to eight layers, wherein each layer comprises an organic material and at least one conductive route comprising at least one conductive trace and at least one conductive via, and wherein a thickness of each layer of the middle section is thinner than a thickness of any of the layers of the upper section and thinner than a thickness of any of the layers of the lower section.
Abstract:
This disclosure relates generally to devices, systems, and methods for making a flexible microelectronic assembly. In an example, a polymer is molded over a microelectronic component, the polymer mold assuming a substantially rigid state following the molding. A routing layer is formed with respect to the microelectronic component and the polymer mold, the routing layer including traces electrically coupled to the microelectronic component. An input is applied to the polymer mold, the polymer mold transitioning from the substantially rigid state to a substantially flexible state upon application of the input.
Abstract:
An apparatus is described having a build-up layer. The build-up layer has a pad side of multiple die pressed into a bottom side of the build-up layer. The multiple die have wide pads to facilitate on wafer testing of the multiple die. The wide pads are spaced a minimum distance permitted by a manufacturing process used to manufacture their respective die. The build-up layer above the wide pads is removed. The apparatus also includes metallization on a top side of the build-up layer that substantially fills regions above the wide pads. The metallization includes lands above the wide pads and multiple wires between the wide pads.
Abstract:
An integrated circuit device may be formed including an electronic substrate and a metallization structure on the electronic substrate, wherein the metallization structure includes a first level comprising a first dielectric material layer, a second level on the first level, wherein the second level comprises a second dielectric material layer, a third level on the second level, wherein the third level comprises a third dielectric material layer, at least one power/ground structure in the second level, and at least one skip level via extending at least partially through the first dielectric material layer of the first level, through the second dielectric layer of the second level, and at least partially through the third dielectric material layer of the third level, wherein the at least one skip level via comprises a continuous conductive material.
Abstract:
An embodiment discloses a processor comprising a first die comprising at least one of a processing core or a field programmable gate array, a second die comprising at least a portion of an L1 cache, an L2 cache, or both an L1 cache and an L2 cache, and wherein the first die or the second die is bonded to an adhesive area.