Abstract:
FETs including a gated oxide semiconductor spacer interfacing with a channel semiconductor. Transistors may incorporate a non-oxide channel semiconductor, and one or more oxide semiconductors disposed proximal to the transistor gate electrode and the source/drain semiconductor, or source/drain contact metal. In advantageous embodiments, the oxide semiconductor is to be gated by a voltage applied to the gate electrode (i.e., gate voltage) so as to switch the oxide semiconductor between insulating and semiconducting states in conjunction with gating the transistor's non-oxide channel semiconductor between on and off states.
Abstract:
A two transistor, one resistor gain cell and a suitable storage element are described. In some embodiments the gain cell has a resistive memory element coupled to a common node at one end to store a value and to a source line at another end, the value being read as conductivity between the common node and the source line of the resistive memory element, a write transistor having a source coupled to a bit line, a gate coupled to a write line, and a drain coupled to the common node to write a value at the bit line to the resistive memory element upon setting the write line high, and a read transistor having a source coupled to a bit line read line and a gate coupled to the common node to read the value written to the resistive memory element as a value at the second transistor gate.
Abstract:
A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
Abstract:
Embodiments include apparatuses, methods, and systems for a flip-flop circuit with low-leakage transistors. The flip-flop circuit may be coupled to a logic circuit of an integrated circuit to store data for the logic circuit when the logic circuit is in a sleep state. The flip-flop circuit may pass a data signal for the logic circuit along a signal path. A capacitor may be coupled between the signal path and ground to store a value of the data signal when the logic circuit is in the sleep state. A low-leakage transistor, such as an IGZO transistor, may be coupled between the capacitor and the signal path and may selectively turn on when the logic circuit transitions from the active state to the sleep state to store the value of the data signal in the capacitor. Other embodiments may be described and claimed.
Abstract:
A thin film transistor is deposited over a portion of a metal layer over a substrate. A memory element is coupled to the thin film transistor to provide a first memory cell. A second memory cell is over the first memory. A logic block is coupled to at least the first memory cell.
Abstract:
Semiconductor devices with isolated body portions are described. For example, a semiconductor structure includes a semiconductor body disposed above a semiconductor substrate. The semiconductor body includes a channel region and a pair of source and drain regions on either side of the channel region. An isolation pedestal is disposed between the semiconductor body and the semiconductor substrate. A gate electrode stack at least partially surrounds a portion of the channel region of the semiconductor body.
Abstract:
Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
Abstract:
A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
Abstract:
An embodiment includes a field effect transistor, comprising: a source region comprising a first III-V material doped to a first conductivity type; a drain region comprising a second III-V material doped to a second conductivity type that is opposite the first conductivity type; a gate electrode disposed over a channel region comprising a third III-V material; and a first spacer, between the channel and drain regions, comprising a fourth III-V material having a charge carrier-blocking band offset from the third III-V material. Other embodiments are described herein.
Abstract:
A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.