Abstract:
A lamp optical component comprises a hollow extruded component, where the hollow extruded component includes a photoluminescence portion and a light shaping portion, and where the photoluminescence portion extends into an interior volume of the hollow extruded component.
Abstract:
A solid-state linear lamp comprises a co-extruded component, the co-extruded component comprising an elongate lens and a layer of photoluminescent material. The elongate lens is for shaping light emitted from the lamp and comprises an elongate interior cavity. The layer of a photoluminescent material is located on an interior wall of the elongate interior cavity. The lamp further comprises an array of solid-state light emitters configured to emit light into the elongate interior cavity.
Abstract:
A solid-state linear lamp comprises a co-extruded component, the co-extruded component comprising multiple photoluminescence portions corresponding to different color temperatures, a diffuser portion, and a top portion, where the photoluminescence portion, the diffuser portion, and the top portion are integrally formed into the co-extruded component.
Abstract:
A solid-state lamp is described that includes a wavelength conversion component located at one end of the lamp. The solid-state lamp comprises: one or more solid-state light emitting devices (typically LEDs); a thermally conductive body; at least one duct; and a photoluminescence wavelength conversion component remote to the one or more LEDs, located at one end of the lamp. The lamp is configured such that the duct extends through the photoluminescence wavelength conversion component and defines a pathway for thermal airflow through the thermally conductive body to thereby provide cooling of the body and the one or more LEDs.
Abstract:
A method is described for manufacturing an LED lamp module, where the individual LEDs in the lamp module do not include a conventional package structure and/or integrated encapsulation on the individual LEDs. The lamp module includes a co-extruded component, the co-extruded component comprising an elongate lens and a layer of photoluminescent material. The elongate lens is for shaping light emitted from the lamp and comprises an elongate interior cavity. The layer of a photoluminescent material is located on an interior wall of the elongate interior cavity. An optical medium is provided as part of the manufacturing process for the lamp module, where the optical medium surrounds the LEDs in an array of LEDs. The optical medium can be co-extruded over the LEDs. In addition, a liquid optical medium can be applied in the assembly process to remove air interfaces between the LEDs and component.
Abstract:
A color/color temperature tunable light emitting device comprises: an excitation source (LED) operable to generate light of a first wavelength range and a wavelength converting component comprising a phosphor material which is operable to convert at least a part of the light into light of a second wavelength range. Light emitted by the device comprises the combined light of the first and second wavelength ranges. The wavelength converting component has a wavelength converting property (phosphor material concentration per unit area) that varies spatially. The color of light generated by the source is tunable by relative movement of the wavelength converting component and excitation source such that the light of the first wavelength range is incident on a different part of the wavelength converting component and the generated light comprises different relative proportions of light of the first and second wavelength ranges.
Abstract:
A solid-state lamp is described that includes a first light emission zone and a second light emission zone, where the first light emission zone is longitudinally spaced apart from the second light emission zone. The light emission zones comprise a photoluminescence wavelength conversion component and a solid state light emitting device. The lamp comprises a lower body, a central body, and an upper duct, where the central body, and the upper duct together define at least one passageway/duct for thermal airflow.
Abstract:
A photoluminescent composition (“phosphor ink”) comprises a suspension of particles of at least one blue light (380 nm to 480 nm) excitable phosphor material in a light transmissive liquid binder in which the weight loading of at least one phosphor material to binder material is in a range 40% to 75%. The binder can be U.V. curable, thermally curable, solvent based or a combination thereof and comprise a polymer resin; a monomer resin, an acrylic, a silicone or a fluorinated polymer. The composition can further comprise particles of a light reflective material suspended in the liquid binder. Photoluminescence wavelength conversion components; solid-state light emitting devices; light emitting signage surfaces and light emitting signage utilizing the composition are disclosed.
Abstract:
A tunable light emitting device includes a plurality of solid-state light sources, a dimmer switch configured to generate a range of output powers for the light emitting device, a control circuit configured to translate an output power generated by the dimmer switch into an on/off arrangement of the plurality of light sources, and a wavelength conversion component comprising two or more regions with different photo-luminescent materials located remotely to the plurality of solid-state light sources and operable to convert at least a portion of the light generated by the plurality of solid-state light sources to light of a different wavelength, wherein the emission product of the device comprises combined light generated by the plurality of light sources and the two or more regions of the wavelength conversion component.