ANTENNA-BASED QUBIT ANNEALING METHOD
    12.
    发明申请

    公开(公告)号:US20200152853A1

    公开(公告)日:2020-05-14

    申请号:US16591993

    申请日:2019-10-03

    Abstract: Systems and techniques facilitating antenna-based thermal annealing of qubits are provided. In one example, a radio frequency emitter, transmitter, and/or antenna can be positioned above a superconducting qubit chip having a Josephson junction coupled to a set of one or more capacitor pads. The radio frequency emitter, transmitter, and/or antenna can emit an electromagnetic signal onto the set of one or more capacitor pads. The capacitor pads can function as receiving antennas and therefore receive the electromagnetic signal. Upon receipt of the electromagnetic signal, an alternating current and/or voltage can be induced in the capacitor pads, which current and/or voltage thereby heat the pads and the Josephson junction. The heating of the Josephson junction can change its physical properties, thereby annealing the Josephson junction. In another example, the emitter can direct the electromagnetic signal to avoid unwanted annealing of neighboring qubits on the superconducting qubit chip.

    METHODS FOR ANNEALING QUBITS WITH AN ANTENNA CHIP

    公开(公告)号:US20200075833A1

    公开(公告)日:2020-03-05

    申请号:US16115001

    申请日:2018-08-28

    Abstract: Systems, computer-implemented methods, and techniques facilitating antenna-based thermal annealing of qubits are provided. In one example, a first antenna can be positioned above a superconducting qubit chip having a first Josephson junction and a second Josephson junction. The first antenna can direct a first electromagnetic wave toward the first Josephson junction. A first length of a first defined vertical gap, between the first antenna and the superconducting qubit chip, can be sized to cause the first electromagnetic wave to circumscribe a first set of one or more capacitor pads of the first Josephson junction, thereby annealing the first Josephson junction, without annealing the second Josephson junction. In another example, the first length of the first defined vertical gap can be a function of a model of the first electromagnetic wave as a cone, wherein the cone originates from the first antenna and extends toward the superconducting qubit chip.

    Two Dimension Material Fin Sidewall
    20.
    发明申请

    公开(公告)号:US20180301449A1

    公开(公告)日:2018-10-18

    申请号:US15799286

    申请日:2017-10-31

    Abstract: A semiconductor structure, such as a microchip that includes a finFET, includes fins that have a 2D material, such as Graphene, upon at least the fin sidewalls. The thickness of the 2D material sidewall may be tuned to achieve desired finFET band gap control. Neighboring fins of the semiconductor structure form fin wells. The semiconductor structure may include a fin cap upon each fin and the 2D material is formed upon the sidewalls of the fin and the bottom surface of the fin wells. The semiconductor structure may include a well-plug at the bottom of the fin wells and the 2D material is formed upon the sidewalls and upper surface of the fins. The semiconductor structure may include both fin caps and well-plugs such that the 2D material is formed only upon the sidewalls of the fins.

Patent Agency Ranking