Abstract:
A 3D object according to the invention comprises substrate layers infiltrated by a hardened material. The 3D object is fabricated by a method comprising the following steps: Position powder on all or part of a substrate layer. Repeat this step for the remaining substrate layers. Stack the substrate layers. Transform the powder into a substance that flows and subsequently hardens into the hardened material. The hardened material solidifies in a spatial pattern that infiltrates positive regions in the substrate layers and does not infiltrate negative regions in the substrate layers. In a preferred embodiment, the substrate is carbon fiber and excess substrate is removed by abrasion.
Abstract:
A 3D object according to the invention involves substrate layers infiltrated by a hardened material. The 3D object may be fabricated by a method comprising the following steps: Flatten a substrate layer. Position powder on all or part of a substrate layer. Repeat this step for the remaining substrate layers. Stack the substrate layers. Transform the powder into a substance that flows and subsequently hardens into the hardened material. The hardened material solidifies in a spatial pattern that infiltrates positive regions in the substrate layers and does not infiltrate negative regions in the substrate layers. In a preferred embodiment, the substrate is carbon fiber and excess substrate is removed by abrasion.
Abstract:
A 3D object (the “New Object”) is fabricated layer by layer by 3D printing. The shape and relative dimensions of the various parts of the New Object match that of another 3D object (the “Target Object”). In addition, the exterior of the New Object appears to be a photographic likeness of the Target Object. The “photographic” likeness is created by variations in visual characteristics of materials in the layers comprising the New Object, and in particular by variations at or near the surface of the New Object. Thus, the photographic likeness is an integral part of these layers comprising the New Object. An object is scanned, from which a texture map is obtained. A CAD model is sliced into slices (bit maps files) which are then colored by a program with the boundary to match the color or gray scale to color the appropriate pixels, derived from the texture map.
Abstract:
A method and apparatus for resistive heating usable in composite-based additive manufacturing is disclosed. The method includes providing a prepared stack of substrate sheets, placing the stack between electrode assemblies of a compression device, applying a current to thereby heat the stack to a final temperature to liquefy applied powder, compressing the stack to a final height, cooling the stack, and removing the cooled, compressed stack from the compression device. The apparatus comprises at least two plates, a power supply for providing current, a first electrode assembly and a second electrode assembly.
Abstract:
A 3D object according to the invention comprises substrate layers infiltrated by a hardened material. The 3D object is fabricated by a method comprising the following steps: Position powder on all or part of a substrate layer. Repeat this step for the remaining substrate layers. Stack the substrate layers. Transform the powder into a substance that flows and subsequently hardens into the hardened material. The hardened material solidifies in a spatial pattern that infiltrates positive regions in the substrate layers and does not infiltrate negative regions in the substrate layers. In a preferred embodiment, the substrate is carbon fiber and excess substrate is removed by abrasion.
Abstract:
A three-dimensional object comprises substantially planar or flat substrate layers that are folded and stacked in a predetermined order and infiltrated by a hardened material. The object is fabricated by positioning powder on all or part of multiple substrate layers. On each layer, the powder is selectively deposited in a pattern that corresponds to tiles that each have a slice of the object. For each slice, powder is deposited in positions that correspond to positions in the slice where the object exists, and not deposited where the object does not exist. The tiles of each substrate layer are folded and aligned in a predetermined order. Multiple folded substrate layers mat be combined into a single stack. The powder is transformed into a substance that flows and subsequently hardens into the hardened material in a spatial pattern that infiltrates positive regions, and does not infiltrate negative regions, in the substrate layers.
Abstract:
A 3D object (the “New Object”) is fabricated layer by layer by 3D printing. The shape and relative dimensions of the various parts of the New Object match that of another 3D object (the “Target Object”). In addition, the exterior of the New Object appears to be a photographic likeness of the Target Object. The “photographic” likeness is created by variations in visual characteristics of materials in the layers comprising the New Object, and in particular by variations at or near the surface of the New Object. Thus, the photographic likeness is an integral part of these layers comprising the New Object. An object is scanned, from which a texture map is obtained. A CAD model is sliced into slices (bit maps files) which are then colored by a program with the boundary to match the color or gray scale to color the appropriate pixels, derived from the texture map.
Abstract:
A 3D object (the “New Object”) is fabricated layer by layer by 3D printing. The shape and relative dimensions of the various parts of the New Object match that of another 3D object (the “Target Object”). In addition, the exterior of the New Object appears to be a photographic likeness of the Target Object. The “photographic” likeness is created by variations in visual characteristics of materials in the layers comprising the New Object, and in particular by variations at or near the surface of the New Object. Thus, the photographic likeness is an integral part of these layers comprising the New Object. An object is scanned, from which a texture map is obtained. A CAD model is sliced into slices (bit maps files) which are then colored by a program with the boundary to match the color or gray scale to color the appropriate pixels, derived from the texture map.
Abstract:
A 3D object according to the invention involves substrate layers infiltrated by a hardened material. The 3D object may be fabricated by a method comprising the following steps: Flatten a substrate layer. Position powder on all or part of a substrate layer. Repeat this step for the remaining substrate layers. Stack the substrate layers. Transform the powder into a substance that flows and subsequently hardens into the hardened material. The hardened material solidifies in a spatial pattern that infiltrates positive regions in the substrate layers and does not infiltrate negative regions in the substrate layers. In a preferred embodiment, the substrate is carbon fiber and excess substrate is removed by abrasion.