Abstract:
A semiconductor device includes a first epitaxial layer, a second epitaxial layer disposed below the first epitaxial layer, a conductive layer disposed below and directly contacting the second epitaxial layer, and a plurality of spacers disposed between the second epitaxial layer and the conductive layer. The conductive layer includes a metal. The plurality of spacers include a bulk semiconductor material.
Abstract:
According to embodiments, a method for manufacturing a semiconductor device includes forming a mask comprising a pattern of inert structures on a side of a first main surface of a semiconductor substrate. A semiconductor layer is formed over the first main surface, and the semiconductor substrate is thinned from a second main surface opposite to the first main surface. Thereafter, a semiconductor region laterally adjoining the inert structures is anisotropically etched.
Abstract:
A method for fabricating a semiconductor device includes forming an opening in a first epitaxial lateral overgrowth region to expose a surface of the semiconductor substrate within the opening. The method further includes forming an insulation region at the exposed surface of the semiconductor substrate within the opening and filling the opening with a second semiconductor material to form a second epitaxial lateral overgrowth region using a lateral epitaxial growth process.
Abstract:
In accordance with a method of manufacturing a semiconductor arrangement, a first trench is formed into a semiconductor body from a first side. An anodic oxide structure is formed at a bottom side of the first trench by immersing the semiconductor body in an electrolyte and applying an anodizing voltage between the semiconductor body and an electrode in contact with the electrolyte.
Abstract:
A method for producing a semiconductor is disclosed, the method having: providing a semiconductor body having a first side and a second side; forming an n-doped zone in the semiconductor body by a first implantation into the semiconductor body via the first side to a first depth location of the semiconductor body; and forming a p-doped zone in the semiconductor body by a second implantation into the semiconductor body via the second side to a second depth location of the semiconductor body, a pn-junction forming between said n-doped zone and said p-doped zone in the semiconductor body.
Abstract:
A method for producing a semiconductor is disclosed, the method having: providing a semiconductor body having a first side and a second side; forming an n-doped zone in the semiconductor body by a first implantation into the semiconductor body via the first side to a first depth location of the semiconductor body; and forming a p-doped zone in the semiconductor body by a second implantation into the semiconductor body via the second side to a second depth location of the semiconductor body, a pn-junction forming between said n-doped zone and said p-doped zone in the semiconductor body.
Abstract:
A method includes: in a semiconductor wafer having a first semiconductor layer and a second semiconductor layer adjoining the first semiconductor layer, forming a porous region extending from a front surface into the first semiconductor layer; and removing the porous region by an etching process, wherein a doping concentration of the second semiconductor layer is less than 10−2 times a doping concentration of the first semiconductor layer and/or a doping type of the second semiconductor layer is complementary to a doping type of the first semiconductor layer, wherein forming the porous region comprises bringing in contact a porosifying agent with the front surface of the first semiconductor layer and applying a voltage between the first semiconductor layer and a first electrode that is in contact with the porosifying agent, wherein applying the voltage comprises applying the voltage between the first electrode and an edge region of the first semiconductor layer.
Abstract:
A semiconductor device includes a trench extending through a semiconductor substrate and an epitaxial layer disposed over a first side of the semiconductor substrate. The epitaxial layer partially fills a portion of the trench. The semiconductor device further includes a back side metal layer disposed over a second side of the semiconductor substrate. The back side metal layer extends into the trench and fills the remaining portion of the trench. The epitaxial layer partially filling the trench contacts the back side metal layer filling the remaining portion within the trench.
Abstract:
In accordance with an embodiment of the present invention, a method of fabricating a semiconductor device includes forming openings partially filled with a sacrificial material, where the openings extend into a semiconductor substrate from a first side. A void region is formed in a central region of the openings. An epitaxial layer is formed over the first side of the semiconductor substrate and the openings, where the epitaxial layer covers the void region. From a second side of the semiconductor substrate opposite to the first side, the semiconductor substrate is thinned to expose the sacrificial material. The sacrificial material in the openings is removed and the epitaxial layer is exposed. A conductive material is deposited on the exposed surface of the epitaxial layer.
Abstract:
A method for manufacturing a semiconductor device includes: partially dicing a substrate wafer arrangement having a plurality of semiconductor chips, wherein the partial dicing forms trenches around the semiconductor chips on a front-side of the substrate wafer arrangement, the depth being greater than a target thickness of a semiconductor chip; filling the trenches with a polymer material to form a polymer structure; first thinning of the back-side to expose portions of the polymer structure; forming a conductive layer on the back-side of the substrate wafer arrangement so that the exposed portions of the polymer structure are covered; second thinning of the back-side to form insular islands of conductive material, the insular islands separated from each other by the polymer structure, each insular island corresponding to a respective one of the semiconductor chips; and dicing the substrate wafer arrangement along the polymer structure.