Abstract:
Hierarchical Power Management (HPM) architecture considers the limits of scaling on a power management controller, the autonomy at each die, and provides a unified view of the package to a platform. At a simplest level, HPM architecture has a supervisor and one or more supervisee power management units (PMUs) that communicate via at least two different communication fabrics. Each PMU can behave as a supervisor for a number of supervisee PMUs in a particular domain. HPM addresses these needs for products that comprise a collection of dice with varying levels of power and thermal management capabilities and needs. HPM serves as a unified mechanism than can span collection of dice of varying capability and function, which together form a traditional system-on-chip (SoC). HPM provides a basis for managing power and thermals across a diverse set of dice.
Abstract:
A system includes multiple processors and a power controller. Each processor includes a throttling engine. The power controller is to, in response to a determination that a first power consumption level exceeds a first threshold, assert a critical signal to each throttling engine of the plurality of processors. Further, for each processor, the throttling engine of the processor is to perform a sequence of multiple throttling states while the critical signal is asserted by the power controller, where the sequence of multiple throttling states is performed according to a state machine of the throttling engine. Other embodiments are described and claimed.
Abstract:
Described is an apparatus comprising: a plurality of system agents, at least one system agent including one or more queues; and logic to monitor the one or more queues in at least one system agent and to cause the plurality of system agents to block traffic after satisfaction of a criterion.
Abstract:
In an embodiment, a processor includes at least one core to initiate a hot reset, and a peripheral device that is coupled to a root complex fabric via through the root port via an peripheral component interconnect express to on-chip system fabric (PCIE to OSF) bridge. The processor also includes a power control unit that includes reset logic to decouple the peripheral device from the root complex fabric responsive to initiation of the hot reset. After the peripheral device is decoupled from the root complex fabric, the reset logic is to assert a reset of the peripheral device while a first core of the at least one core is in operation. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes at least one core to initiate a hot reset, and a peripheral device that is coupled to a root complex fabric via through the root port via an peripheral component interconnect express to on-chip system fabric (PCIE to OSF) bridge. The processor also includes a power control unit that includes reset logic to decouple the peripheral device from the root complex fabric responsive to initiation of the hot reset. After the peripheral device is decoupled from the root complex fabric, the reset logic is to assert a reset of the peripheral device while a first core of the at least one core is in operation. Other embodiments are described and claimed.
Abstract:
Methods, apparatus, systems, and articles of manufacture to reduce thermal fluctuations in semiconductor processors are disclosed. An apparatus includes a temperature analyzer to determine a current temperature of a processor. The apparatus further includes a controller to provide an idle workload to the processor to execute in response to the current temperature falling below a setback temperature.
Abstract:
In one embodiment, a system on a chip integrated circuit (SoC) is provided that includes graphics processing resources including one or more graphics processing cores a memory subsystem including a memory controller, a physical interface, and a memory device and circuitry to dynamically adjust a voltage and frequency of the memory subsystem based on a workload executed by the graphics processing resources.
Abstract:
In an embodiment, a processor includes at least one core and power management logic. The power management logic is to receive temperature data from a plurality of dies within a package that includes the processor, and determine a smallest temperature control margin of a plurality of temperature control margins. Each temperature control margin is to be determined based on a respective thermal control temperature associated with the die and also based on respective temperature data associated with the die. The power management logic is also to generate a thermal report that is to include the smallest temperature control margin, and to store the thermal report. Other embodiments are described and claimed.
Abstract:
Hierarchical Power Management (HPM) architecture considers the limits of scaling on a power management controller, the autonomy at each die, and provides a unified view of the package to a platform. At a simplest level, HPM architecture has a supervisor and one or more supervisee power management units (PMUs) that communicate via at least two different communication fabrics. Each PMU can behave as a supervisor for a number of supervisee PMUs in a particular domain. HPM addresses these needs for products that comprise a collection of dice with varying levels of power and thermal management capabilities and needs. HPM serves as a unified mechanism than can span collection of dice of varying capability and function, which together form a traditional system-on-chip (SoC). HPM provides a basis for managing power and thermals across a diverse set of dice.
Abstract:
In an embodiment, a processor includes a first chip of a multi-chip package (MCP). The first chip includes at least one core and first chip temperature control (TC) logic to assert a first power adjustment signal at a second chip of the MCP responsive to an indication that a first chip temperature of the first chip exceeds a first threshold. The processor also includes a conduit that includes a bi-directional pin to couple the first chip to the second chip within the MCP. The conduit is to transport the first power adjustment signal from the first chip to the second chip and the first power adjustment signal is to cause an adjustment of a second chip power consumption of the second chip. Other embodiments are described and claimed.