Abstract:
Metal-insulator-semiconductor (MIS) contacts for germanium and its alloys include insulator layers of oxygen-deficient metal oxide deposited by atomic layer deposition (ALD). The oxygen deficiency reduces the tunnel barrier resistance of the insulator layer while maintaining the layer's ability to prevent Fermi-level pinning at the metal/semiconductor interface. The oxygen deficiency is controlled by optimizing one or more ALD parameters such as shortened oxidant pulses, use of less-reactive oxidants such as water, heating the substrate during deposition, TMA “cleaning” of native oxide before deposition, and annealing after deposition. Secondary factors include reduced process-chamber pressure, cooled oxidant, and shortened pulses of the metal precursor.
Abstract:
Methods and apparatus for processing using a plasma source for the treatment of semiconductor surfaces are disclosed. The apparatus includes an outer vacuum chamber enclosing a substrate support, a plasma source (either a direct plasma or a remote plasma), and an optional showerhead. Other gas distribution and gas dispersal hardware may also be used. The plasma source may be used to generate activated species operable to alter the surface of the semiconductor materials. Further, the plasma source may be used to generate activated species operable to enhance the nucleation of deposition precursors on the semiconductor surface.
Abstract:
Combinatorial processing of a substrate comprising site-isolated sputter deposition and site-isolated plasma processing can be performed in a same process chamber. The process chamber, configured to perform sputter deposition and plasma processing, comprises a grounded shield having at least an aperture disposed above the substrate to form a small, dark space gap to reduce or eliminate any plasma formation within the gap. The plasma processing may include plasma etching or plasma surface treatment.
Abstract:
Selector elements that can be suitable for nonvolatile memory device applications are disclosed. The selector element can have low leakage currents at low voltages to reduce sneak current paths for non-selected devices, and higher leakage currents at higher voltages to minimize voltage drops during device switching. The selector element can be based on multilayer film stacks (e.g. metal-semiconductor-metal (MSM) stacks). A structure including diamond-like carbon (DLC) can be used to surround the semiconductor layer of the MSM stack. The high thermal conductivity of the DLC structure may serve to remove heat from the selector device while higher currents are flowing through the selector element. This may lead to improved reliability and improved endurance.
Abstract:
Selector elements that can be suitable for nonvolatile memory device applications are disclosed. The selector element can have low leakage currents at low voltages to reduce sneak current paths for non-selected devices, and higher leakage currents at higher voltages to minimize voltage drops during device switching. The selector element can be based on multilayer film stacks (e.g. metal-semiconductor-metal (MSM) stacks). The semiconductor layer of the selector element can include a photo-luminescent or electro-luminescent material. Conductive materials of the MSM may include tungsten, titanium nitride, carbon, or combinations thereof.
Abstract:
Selector elements that can be suitable for nonvolatile memory device applications are disclosed. The selector element can have low leakage currents at low voltages to reduce sneak current paths for non-selected devices, and higher leakage currents at higher voltages to minimize voltage drops during device switching. The selector element can be based on multilayer film stacks (e.g. metal-semiconductor-metal (MSM) stacks). The semiconductor layer of the selector element can include a photo-luminescent or electro-luminescent material. Conductive materials of the MSM may include tungsten, titanium nitride, carbon, or combinations thereof.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming an interlayer of dielectric oxide material in a FET region and overlying a semiconductor substrate. A high-K dielectric layer is deposited overlying the interlayer. Fluorine is incorporated into the interlayer and/or the high-K dielectric layer.
Abstract:
Methods and apparatus for forming a dielectric layer for use as a gate dielectric are provided. A high-k layer is formed with first ALD process using a halogen-based precursor. The metal in the halogen-based precursor may be at least one of hafnium, zirconium, or titanium. The halogen in the halogen-based precursor may be at least one of fluorine, chlorine, or iodine. In some embodiments, the halogen-based metal precursor includes hafnium chloride. The remainder of the high-k layer is formed with second ALD process using a metal organic-based precursor. The metal in the metal organic-based precursor may be at least one of hafnium, zirconium, or titanium. The organic ligands in the metal organic-based precursor may be at least one of β-diketonate precursors, alkoxide precursors, amino precursors. In some embodiments, the metal organic-based precursor includes amino precursors.
Abstract:
Irradiation with ultraviolet (UV) light during atomic layer deposition (ALD) can be used to cleave unwanted bonds on the layer being formed (e.g., trapped precursor ligands or process-gas molecules). Alternatively, the UV irradiation can be used to excite the targeted bonds so they may be more easily cleaved by other means. The use of UV may enable the formation of low-defect-density films at lower deposition temperatures (e.g.,