Oxide removal by remote plasma treatment with fluorine and oxygen radicals
    5.
    发明授权
    Oxide removal by remote plasma treatment with fluorine and oxygen radicals 有权
    用氟和氧自由基通过远程等离子体处理除去氧化物

    公开(公告)号:US08945414B1

    公开(公告)日:2015-02-03

    申请号:US14079442

    申请日:2013-11-13

    摘要: Oxides (e.g., native or thermal silicon oxide) are etched from underlying silicon with a mixture of fluorine and oxygen radicals generated by a remote plasma. The oxygen radicals rapidly oxidize any uncovered bare silicon areas, preventing the pitting that can result from fluorine etching bare silicon more rapidly than it etches the surrounding oxide. A very thin (few Å), highly uniform passivation layer remaining on the silicon after the process may be left in place or removed. An oxygen-impermeable layer may be formed in-situ immediately afterward to prevent further oxidation. A pre-treatment with oxygen radicals alone fills pores and gaps in the oxide before etching begins.

    摘要翻译: 通过由远程等离子体产生的氟和氧自由基的混合物从下面的硅蚀刻氧化物(例如天然或热氧化硅)。 氧自由基快速氧化任何未覆盖的裸硅区域,防止氟蚀刻裸硅的点蚀比其蚀刻周围氧化物更快。 在该过程之后残留在硅上的非常薄(几埃)的高度均匀的钝化层可能留在原位或去除。 可以立即就地形成不透氧层,以防止进一步的氧化。 单独的氧自由基的预处理在蚀刻开始之前填充氧化物中的孔隙和间隙。

    Low temperature deposition of low loss dielectric layers in superconducting circuits
    6.
    发明授权
    Low temperature deposition of low loss dielectric layers in superconducting circuits 有权
    超导电路中低损耗介电层的低温沉积

    公开(公告)号:US09455393B1

    公开(公告)日:2016-09-27

    申请号:US14981163

    申请日:2015-12-28

    CPC分类号: H01L39/2493 H01L27/18

    摘要: Provided are superconducting circuits and method of forming thereof. A superconducting circuit may include a low loss dielectric (LLD) layer formed from one or both of polycrystalline silicon or polycrystalline germanium. The LLD layer may be formed at a low temperature (e.g., less than about 525° C.) using chemical vapor deposition (CVD). Addition of germanium may help to lower the deposition temperature and improve crystallinity of the resulting layer. The LLD layer is formed without adding silicides at the interface of the LLD layer and metal electrode. In some embodiments, an initial layer (e.g., a seed layer or a protective layer) may be formed on a metal electrode prior to forming the LLD layer. For example, the initial layer may include one of zinc sulfide, polycrystalline germanium, or polycrystalline silicon. The initial layer may be deposited at a low pressure (e.g., less than 10 Torr) to ensure higher levels of crystallinity.

    摘要翻译: 提供超导电路及其形成方法。 超导电路可以包括由多晶硅或多晶锗中的一个或两者形成的低损耗电介质(LLD)层。 可以使用化学气相沉积(CVD)在低温(例如,小于约525℃)下形成LLD层。 添加锗可能有助于降低沉积温度并改善所得层的结晶度。 在LLD层和金属电极的界面处不添加硅化物形成LLD层。 在一些实施例中,可以在形成LLD层之前在金属电极上形成初始层(例如种子层或保护层)。 例如,初始层可以包括硫化锌,多晶锗或多晶硅中的一种。 初始层可以以低压(例如,小于10托)沉积以确保更高水平的结晶度。

    Method for forming a low resistivity tungsten silicide layer for metal gate stack applications
    7.
    发明申请
    Method for forming a low resistivity tungsten silicide layer for metal gate stack applications 审中-公开
    用于形成用于金属栅极堆叠应用的低电阻率硅化钨层的方法

    公开(公告)号:US20140363942A1

    公开(公告)日:2014-12-11

    申请号:US13915324

    申请日:2013-06-11

    IPC分类号: H01L21/28 H01L29/66

    摘要: Tungsten silicide layers can be used in CMOS transistors in which the work function of the tungsten silicide layers can be tuned for use in PMOS and NMOS devices. A co-sputtering approach can be used in which silicon and tungsten are deposited on a high dielectric constant gate dielectric layer. The tungsten silicide layer can be annealed at or above a critical temperature to optimize the resistivity of the tungsten silicide layer. In some embodiments, the concentration of as-deposited tungsten silicide can be between 50 at % silicon to 80 at % silicon. The critical temperatures can be lower at higher silicon concentration, such as 700 C. at 63 at % silicon to 600 C. at 74 at % silicon.

    摘要翻译: 硅化钨层可用于CMOS晶体管,其中硅化钨层的功函数可调谐用于PMOS和NMOS器件。 可以使用共溅射方法,其中硅和钨沉积在高介电常数栅极电介质层上。 硅化钨层可以在临界温度以上或高于临界温度退火,以优化硅化钨层的电阻率。 在一些实施例中,沉积的硅化钨的浓度可以在50at%的硅与80at%的硅之间。 较高的硅浓度,例如700℃,63at%硅至600℃,74at%的硅,临界温度可以较低。

    Combining Materials in Different Components of Selector Elements of Integrated Circuits
    9.
    发明申请
    Combining Materials in Different Components of Selector Elements of Integrated Circuits 审中-公开
    将材料组合在集成电路选择元件的不同组件中

    公开(公告)号:US20170062522A1

    公开(公告)日:2017-03-02

    申请号:US15235992

    申请日:2016-08-12

    IPC分类号: H01L27/24 G11C13/00 H01L45/00

    摘要: Provided are selector elements having snapback characteristics and non-volatile memory cells comprising such selector elements. To achieve its snapback characteristic, a selector element may include a dielectric layer comprising an alloy of two or more materials. In the same or other embodiments, the selector element may include a doped electrode, such carbon electrodes doped with silicon, germanium, and/or selenium. Concentrations of different materials forming an alloy may vary throughout the thickness of the dielectric layer. For example, the concentration of the first one alloy material may be higher in the center of the dielectric layer than near the interfaces of the dielectric layer with the electrodes. Some examples of this alloy material include germanium, indium, and aluminum. Examples of other materials in the same alloy include silicon, gallium, arsenic, and antimony. In some embodiments, the alloy is formed by three or more elements, such as indium gallium arsenic.

    摘要翻译: 提供具有快速恢复特性的选择器元件和包括这种选择器元件的非易失性存储单元。 为了实现其回跳特性,选择器元件可以包括包含两种或更多种材料的合金的电介质层。 在相同或其它实施例中,选择器元件可以包括掺杂电极,掺杂有硅,锗和/或硒的碳电极。 形成合金的不同材料的浓度可以在电介质层的整个厚度上变化。 例如,第一种合金材料的浓度在电介质层的中心处可以比在具有电极的介电层的界面附近更高。 该合金材料的一些实例包括锗,铟和铝。 相同合金中的其它材料的实例包括硅,镓,砷和锑。 在一些实施例中,合金由三种或更多种元素形成,例如铟镓砷。

    Using Metal Silicides as Electrodes for MSM Stack in Selector for Non-Volatile Memory Application
    10.
    发明申请
    Using Metal Silicides as Electrodes for MSM Stack in Selector for Non-Volatile Memory Application 审中-公开
    使用金属硅化物作为选择器中MSM堆叠的电极用于非易失性存储器应用

    公开(公告)号:US20160149129A1

    公开(公告)日:2016-05-26

    申请号:US14553632

    申请日:2014-11-25

    IPC分类号: H01L45/00

    摘要: Selector elements that can be suitable for nonvolatile memory device applications are disclosed. The selector element can have low leakage currents at low voltages to reduce sneak current paths for non-selected devices, and higher leakage currents at higher voltages to minimize voltage drops during device switching. The selector element can be based on multilayer film stacks (e.g. metal-semiconductor-metal (MSM) stacks). The metal layer of the selector element can include conductive materials such as metal silicides, and metal silicon nitrides. Conductive materials of the MSM may include tantalum silicide, tantalum silicon nitride, titanium silicide, titanium silicon nitride, or combinations thereof.

    摘要翻译: 公开了适用于非易失性存储器件应用的选择元件。 选择器元件在低电压下可以具有低泄漏电流,以减少非选定器件的潜行电流路径,以及在较高电压下更高的漏电流,以最大限度地减少器件切换期间的电压降。 选择器元件可以基于多层膜堆叠(例如金属 - 半导体 - 金属(MSM)堆叠)。 选择元件的金属层可以包括诸如金属硅化物的导电材料和金属硅氮化物。 MSM的导电材料可以包括硅化钽,氮化钽,硅化钛,氮化钛或其组合。