摘要:
After forming spacers over a hard mask layer using a sidewall image transfer process, a neutral material layer is formed on the portions of the hard mask layer that are not covered by the spacers. The spacers and the neutral material layer guide the self-assembly of a block copolymer material. The microphase separation of the block copolymer material provides a lamella structure of alternating domains of the block copolymer material.
摘要:
A method for design template pattern optimization, comprises receiving a design for a fin field effect transistor (FinFET) device, wherein the design includes a configuration of fins, creating a design template pattern for the design for use in connection with directed self-assembly (DSA) patterning using graphoepitaxy, and optimizing the design template pattern to minimize pattern density gradients, wherein the design template pattern includes a plurality of guiding lines for guiding a block-copolymer deposited during the DSA patterning and the optimizing comprises altering the guiding lines.
摘要:
After forming spacers over a hard mask layer using a sidewall image transfer process, a neutral material layer is formed on the portions of the hard mask layer that are not covered by the spacers. The spacers and the neutral material layer guide the self-assembly of a block copolymer material. The microphase separation of the block copolymer material provides a lamella structure of alternating domains of the block copolymer material.
摘要:
A process for patterning a hard mask material with line-space patterns below a 30 nm pitch and a 15 nm critical dimension by employing a spin-on titanium-silicon (TiSi) polymer or oligomer as a tone inversion material is provided. The spin-on TiSi material is spin-coated over a patterned OPL that includes a first pattern generated from a DSA based process. The spin-on TiSi material fill trenches within the patterned OPL to form a tone inverted pattern by removing the patterned OPL selective to the spin-on TiSi material. The inverted pattern is a complementary pattern to the first pattern, and is transferred into the underlying hard mask material by an anisotropic etch.
摘要:
A chemical pattern layer including an orientation control material and a prepattern material is formed over a substrate. The chemical pattern layer includes alignment-conferring features and additional masking features. A self-assembling material is applied and self-aligned over the chemical pattern layer. The polymeric block components align to the alignment-conferring features, while the alignment is not altered by the additional masking features. A first polymeric block component is removed selective to a second polymeric block component by an etch to form second polymeric block component portions having a pattern. A composite pattern of the pattern of an etch-resistant material within the chemical pattern layer and the pattern of the second polymeric block component portions can be transferred into underlying material layers employing at least another etch.
摘要:
After forming spacers over a hard mask layer using a sidewall image transfer process, a neutral material layer is formed on the portions of the hard mask layer that are not covered by the spacers. The spacers and the neutral material layer guide the self-assembly of a block copolymer material. The microphase separation of the block copolymer material provides a lamella structure of alternating domains of the block copolymer material.
摘要:
A material stack is formed on the surface of a semiconductor substrate. The top layer of the material stack comprises at least an organic planarization layer. A neutral hard mask layer is formed on the top of the organic planarization layer. The neutral hard mask layer is neutral to the block copolymers used for direct self-assembly. A plurality of template etch stacks are then formed on top of the neutral hard mask layer. After formation of the template etch stacks, neutrality recovery is performed on the neutral hard mask layer and the top portions of the template etch stacks, the vertical sidewalls of the template etch stacks being substantially unaffected by the neutrality recovery. A template for DSA is thus obtained.
摘要:
A chemical pattern layer including an orientation control material and a prepattern material is formed over a substrate. The chemical pattern layer includes alignment-conferring features and additional masking features. A self-assembling material is applied and self-aligned over the chemical pattern layer. The polymeric block components align to the alignment-conferring features, while the alignment is not altered by the additional masking features. A first polymeric block component is removed selective to a second polymeric block component by an etch to form second polymeric block component portions having a pattern. A composite pattern of the pattern of an etch-resistant material within the chemical pattern layer and the pattern of the second polymeric block component portions can be transferred into underlying material layers employing at least another etch.
摘要:
A method for design template pattern optimization, comprises receiving a design for a fin field effect transistor (FinFET) device, wherein the design includes a configuration of fins, creating a design template pattern for the design for use in connection with directed self-assembly (DSA) patterning using graphoepitaxy, and optimizing the design template pattern to minimize pattern density gradients, wherein the design template pattern includes a plurality of guiding lines for guiding a block-copolymer deposited during the DSA patterning and the optimizing comprises altering the guiding lines.
摘要:
A process for patterning a hard mask material with line-space patterns below a 30 nm pitch and a 15 nm critical dimension by employing a spin-on titanium-silicon (TiSi) polymer or oligomer as a tone inversion material is provided. The spin-on TiSi material is spin-coated over a patterned OPL that includes a first pattern generated from a DSA based process. The spin-on TiSi material fill trenches within the patterned OPL to form a tone inverted pattern by removing the patterned OPL selective to the spin-on TiSi material. The inverted pattern is a complementary pattern to the first pattern, and is transferred into the underlying hard mask material by an anisotropic etch.