Abstract:
A new group of materials comprises intercalates of organometallic compounds in layered structures of water-insoluble salts comprised of a tetravalent metal cation and an acid phosphate, arsenate or vanadate anion. Related materials comprise intercalates of organometallic compounds in layered structures of uranyl and transuranyl phosphates, arsenates and vanadates. Intercalation hosts are represented either by the formula M(H.sub.1-y A.sub.y XO.sub.4).sub.2.nH.sub.2 O or by the formula H.sub.1-y A.sub.y TO.sub.2 XO.sub.4.nH.sub.2 O, where M is at least one tetravalent cation selected from the group consisting of zirconium, titanium, hafnium, cerium, thorium, tin, lead and germanium, A is at least one monovalent cation selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, ammonium and substituted ammonium, X is at least one element selected from the group consisting of phosphorus, arsenic and vanadium, T is at least one element selected from the group consisting of uranium and transuranic elements, "y" ranges from 0 to 1 and "n" ranges from 0 to 6. Intercalated guests comprise an organometallic cation with a transition metal to which from 2 to 6 ligands are bonded.
Abstract:
This invention relates to supported activators comprising the product of the combination of an ion-exchange layered silicate, an organoaluminum compound, and a heterocyclic compound, which may be substituted or unsubstituted. This invention further relates to catalyst systems comprising catalyst compounds and such activators, as well as processes to polymerize unsaturated monomers using the supported activators.For the purposes of this patent specification and the claims thereto, the term “activator” is used interchangeably with the term “co-catalyst”, the term “catalyst” refers to a metal compound that when combined with an activator polymerizes olefins, and the term “catalyst system” refers to the combination of a catalyst and an activator with or without a support. The terms “support” or “carrier”, for purposes of this patent specification, are used interchangeably and are any ion-exchange layered silicates.
Abstract:
Pillared clays composited with Group VIII metals or Group VI metals may be used for the hydroconversion with excellent activity maintenance, of Fischer Tropsch waxes, boiling above about 700.degree. F.
Abstract:
Hydroconversion of paraffin containing hydrocarbon feeds is effected over a supported Group VIII and Group VI metal containing catalyst also containing a hydrocracking suppressant such as a Group IB metal, wherein the catalyst is preferably prepared by fixing the Group IB metal on to the support prior to incorporating the Group VI metal on to the support.
Abstract:
Disclosed are a class of compositions, and methods of preparing them, which compositions are comprised of inorganic oxides and organic bases. The compositions have layered structures and are represented by the formulaZ.sub.a H.sub.b M.sub.c [A.sub.n-1 B.sub.n O.sub.3n+1 ]where Z is an organic base having a conjugate acid with a pKa value greater than about 3, H is hydrogen, M is a monovalent cation, O
Abstract translation:公开了一类组合物及其制备方法,该组合物由无机氧化物和有机碱组成。 组合物具有层状结构,并且由式ZaHbMc [An-1BnO3n + 1]表示,其中Z是具有pKa值大于约3的共轭酸的有机碱,H是氢,M是一价阳离子, a = 2,c <1,b + c = 1; A是一价,二价或三价阳离子,B是过渡金属,n是3至7的整数。
Abstract:
A new composition of matter comprising molybdenum trioxide and heterocyclic nitrogen or oxygen Lewis bases. The molybdenum trioxide, upon reaction with Lewis base, forms a layered compound characterized in that the Lewis base is covalently bonded to molybdenum atoms in molybdenum oxide layers. The layered compound has the formula LMoO.sub.3 or L.sub.1/2 MoO.sub.3 where L is a Lewis base containing nitrogen or oxygen electron donors and selected from the group consisting of 5- and 6-membered heterocyclic amines, amine oxides, triorganophosphates, phosphine oxides and sulfoxides. L has the steric requirement such that its maximum cross-sectional area perpendicular to an axis running through the L-Mo covalent bond is less than about 30(.ANG.).sup.2.
Abstract:
New intercalated compounds comprising a cation intercalated in a layered mixed oxide, said oxide having layers of corner linked octahedra and tetrahedra. The composition has the formula A.sub.q MOXO.sub.4.nH.sub.2 O where A is a monovalent, divalent or polyvalent cation, MOXO.sub.4 is a layered mixed oxide selected from the group consisting of VOPO.sub.4, VOSO.sub.4, VOAsO.sub.4, VOMoO.sub.4, NbOPO.sub.4, NbOAsO.sub.4, TaOPO.sub.4 and MoOPO.sub.4, n is a number from 0 to 4 and q is a number from about 0.001 to about 1.0.
Abstract:
A new composition of matter comprising molybdenum trioxide and heterocyclic nitrogen or oxygen Lewis bases. The molybdenum trioxide, upon reaction with Lewis base, forms a layered compound characterized in that the Lewis base is covalently bonded to molybdenum atoms in molybdenum oxide layers. The layered compound has the formula LMoO.sub.3 where L is a Lewis base containing nitrogen or oxygen electron donors and selected from the group consisting of 5- and 6-membered heterocyclic amines, amine oxides, triorganophosphates, phosphine oxides and sulfoxides. L has the steric requirement such that its cross-sectional area perpendicular to an axis running through the L-Mo covalent bond is less than about 30(A).sup.2.
Abstract:
A process for dewaxing waxy hydrocarbonaceous materials, such as hydrocarbon fuel and lubricating oil fractions to reduce their cloud and pour points comprises reacting the material with hydrogen in the presence of a dewaxing catalyst comprising at least one metal catalytic component and ferrierite in which at least a portion of its cation exchange positions are occupied by one or more trivalent rare earth metal cations. The rare earth ion exchanged ferrierite catalyst has good selectivity for lubricating oil production, particularly when dewaxing a Fischer-Tropsch wax hydroisomerate. Preferably at least 10% and more preferably at least 15% of the ferreirite cation exchange capacity is occupied by one or more trivalent rare earth metal cations.
Abstract:
Ferrierite is ion exchanged with trivalent rare earth metals by a hydrothermal ion exchange method. The ion exchange is carried out by contacting ferrierite, in which its cation exchange positions are occupied by hydrogen or a hydrogen precursor, with an aqueous solution of one or more rare earth metal cations at a temperature above the boiling point of the solution. After the ion exchange, preferably at least 10% and more preferably at least 15% of the ferrierite cation exchange capacity is occupied by a trivalent rare earth metal cation. When combined with a catalytic metal, such as a Group VIII noble metal, the trivalent rare earth metal ion exchanged ferrierite is useful as a dewaxing catalyst having good selectivity for lubricating oil fractions, particularly when dewaxing a Fischer-Tropsch wax hydroisomerate.