Abstract:
A semiconductor apparatus comprises of a first semiconductor chip having a through silicon via (TSV) and a second semiconductor chip also having a TSV, wherein the respective semiconductor chips are stacked vertically and are connected through a conductive connection member without the assistance of an additional bump between the conductive connection member and the second semiconductor chip.
Abstract:
Exemplary embodiments of the present invention provide a light emitting diode package including a light emitting diode chip, a lead frame having a chip area on which the light emitting diode chip is arranged, and a package body supporting the lead frame. The lead frame includes a first terminal group arranged at a first side of the chip area and a second terminal group arranged at a second side of the chip area. The first terminal group and the second terminal group each include a first terminal and a second terminal, and in at least one of the first terminal group and the second terminal group, the first terminal is connected to the chip area and the second terminal is separated from the chip area. The first terminal has a first width, the second terminal has a second width, and the first width is different than the second width.
Abstract:
A semiconductor apparatus having first and second chips includes a first operation unit disposed in the first chip, and is configured to perform a predetermined arithmetic operation for an initial code according to a first repair signal and generate a first operation code; and a second operation unit disposed in the second chip, and configured to perform the predetermined arithmetic operation for the first operation code according to a second repair signal and generate a second operation code.
Abstract:
A nonvolatile ferroelectric memory device includes a plurality of unit cell arrays, wherein each of the plurality of unit cell arrays includes: a bottom word line; a plurality of insulating layers formed on the bottom word line, respectively; a floating channel layer comprising a plurality of channel regions located on the plurality of insulating layers and a plurality of drain and source regions which are alternately electrically connected in series to the plurality of channel regions; a plurality of ferroelectric layers formed respectively on the plurality of channel regions of the floating channel layer; and a plurality of word lines formed on the plurality of ferroelectric layers, respectively. The unit cell array reads and writes a plurality of data by inducing different channel resistance to the plurality of channel regions depending on polarity states of the plurality of ferroelectric layers.
Abstract:
Provided are an apparatus for decoding a minimum memory access-based context adaptive variable length code (CAVLC) of the moving picture compression standard, H.264, and a table search method for decoding a context adaptive variable length code using the same. The apparatus for decoding a context adaptive variable length code may be useful to improve an overall decoding speed since the repeated memory accesses may be reduced to 2 cycles of memory accesses by reconstructing a context adaptive variable length code table of first decoding information (TrailingOnes) and second decoding information (TotalCoefficient) into 2-step tables and storing the reconstructed 2-step tables in advance and performing a table search to decode the first decoding information and the second decoding information, by using the information stored in the 2-step tables, depending on whether the remaining bits except for the number of leading zero are present in the inputted bit stream.
Abstract:
A semiconductor apparatus includes a TSV formed to be electrically connected with another chip and a TSV test unit configured to check a capacitance component of the TSV to generate a TSV abnormality signal.
Abstract:
A semiconductor device stabilizes an operation of an input buffer. A semiconductor device includes an input potential detection unit, an input buffer, and a current sink unit. The input potential detection unit outputs a detection signal in response to a level of an input signal. The input buffer buffers the input signal by differentially amplifying the input signal through a first current sink unit. The current sink unit receives the detection signal, and in response to the detection signal, performs an auxiliary differential amplifying operation with respect to the input signal buffered by the input buffer.