摘要:
Single layer anti-reflective hard-coat; in particular which comprises a structured surface, preferably a nano-structured surface. The hard-coat preferably a hardness above 0.5 GPa, more preferably above 0.7 GPa and most preferably above 1.0 GPa as measured by nano-indentation and/or a reduced tensile modulus above 3 GPa, more preferably above 8.5 GPa or 20 GPa, most preferably above 40 GPa as measured by nano-indentation and/or a scratch resistance above 5 mJ μm−3, preferably above 15 or 30 mJ μm−3, preferably above 60 mJ μm−3 as measured by nano-indentation, and/or contains an amount of inorganic nano-particles from 5 to 75 weight %, preferably from 15 to 50 weight % relative to the weight of the second material present in the hard-coat.Preferably, the spatial length scale of the refractive index gradient in the single layer hard-coat is between 10 and 1000 nm; in particular between 100 and 200 nm.Also concerned is a process for preparing a single layer hard-coat, comprising the steps ofa) applying a mixture on a substrate, which mixture comprises i. at least a first material which does not crosslink under the conditions chosen in step b) ii. at least a second material which does crosslink under the conditions chosen in step b) iii. nano-particles, and iv. optionally at least one solvent b) inducing crosslinking in the mixture applied to the substrate, v. subsequently removing at least part of the first material, and shaped articles comprising such single layer hard-coat.
摘要:
The invention relates to hydrophobic coatings comprising reactive inorganic nano-particles, as well as their use in industrial processes. These coatings combine hydrophobic or even super-hydrophobic properties with superior mechanical properties and easy proccessability. Some super-hydrophobic coatings may even have self-cleaning properties. These hydrophobic and super-hydrophobic coatings may be applied in the food industry, exterior or interior decoration, automobile industry and display industry. Also comprised within the invention are finished articles comprising a coating of inorganic nano-particles.
摘要:
The invention relates to an article comprising a substrate and a nano-porous coating, wherein the reflectivity of the article is less then 2%, and whereby the amount of sodium measured in the coating by XPS is less then 1 wt %, and further to a method of making the article.
摘要:
The present invention relates to a fiber comprising a biodegradable polymer which undergoes dimensional change upon injection in the human or animal body wherein the dimensional change is a reduction of the surface area to volume ratio of a factor 2 to 10. The fiber is sized for injection via a pharmaceutical syringe needle having a bore of at least 25 Gauge. The biodegradable polymer is an amorphous biodegradable polymer selected from the group of poly-hexamethylene carbonates or polyesteramides. The amorphous biodegradable polymer is a preferably a polyesteramide comprising alpha-amino acids, diols and dicarboxylic acids as building blocks. The invention further relates to the use of the fiber for the manufacturing of a medicament for the treatment of ophthalmic diseases. The invention also relates to a process for the manufacturing of the fiber comprising the following process steps; a. extruding a biodegradable polymer into a fiber fitting in a needle of at least 25 Gauge b. which while under tension is cooled below its glass transition temperature such that the resultant fiber is amorphous.
摘要:
The invention relates to a membrane construction comprising multiple layers wherein at least one of the layers is a nanoweb made of polymeric nanofibers, wherein the mean flow pore size of the nanoweb is in the range from 50 nm to 5 μm, wherein the number average diameter of the nanofibers is in the range from 100 to 600 nm, wherein the basis weight of the nanoweb is in the range from 1 to 20 g/m2, wherein the porosity of the nanoweb is in the range from 60 to 95%, wherein at least one of the layers is a support layer and wherein the nanoweb is hydrophilic.
摘要翻译:本发明涉及包括多个层的膜结构,其中至少一个层是由聚合物纳米纤维制成的纳米纤维网,其中纳米纤维网的平均流动孔径在50nm至5um的范围内,其中数均直径 的纳米纤维的范围在100至600nm的范围内,其中纳米纤维网的基重在1至20g / m 2的范围内,其中纳米纤维网的孔隙率在60至95%的范围内,其中在 层中的至少一层是支撑层,其中纳米网是亲水性的。
摘要:
The invention relates to a coating material suitable for providing a substrate with an anti-biofouling coating, the coating material comprising a macromolecule comprising: (A) a macromolecular scaffold comprising a reactive group capable of undergoing a Michael type reaction between a Michael type acceptor group and a Michael type donor group, (B) at least one functional moiety attached to the macromolecular scaffold, said at least one functional moiety comprising a hydrophilic moiety, wherein the functional moiety is derivable from a Michael type reaction, involving the reactive group on the macromolecular scaffold and a reactive hydrophilic moiety and (C) at least one moiety capable of crosslinking the coating material.
摘要:
Method for providing a substrate with an anti-biofouling coating the method comprising: a. obtaining a coating composition comprising nanoparticles being grafted with reactive groups and hydrophilic polymer chains and a solvent; b. applying the coating composition to the substrate; and c. optionally curing the coating composition herein the surface tension of the coating composition at 25° C. is below 40 mN/m.
摘要:
A sol-gel process for preparing a mixture of metal-oxide-metal compounds wherein at least one metal oxide precursor is subjected to a hydrolysis treatment to obtain one or more corresponding metal oxide hydroxides, the metal oxide hydroxides so obtained are subjected to a condensation treatment to form the metal-oxide-metal compounds, which process is carried out in the presence of an encapsulated catalyst, whereby the catalytically active species is released from the encapsulating unit by exposure to an external stimulus, and wherein the catalytically active species released after exposure to such external stimulus is capable of catalyzing the condensation of the metal-hydroxide groups that are present in the metal oxide hydroxides so obtained.
摘要:
The invention relates to a micro-porous membrane comprising a porous membrane carrier made of a first polymeric material (A) and comprising a second polymeric material (B) intimately divided throughout the porous membrane carrier, wherein the porous membrane carrier comprises a plurality of interconnected polymeric fibers, fibrils, filaments and/or lamellae having a thickness of less than 1 μm, the porous membrane carrier has an interconnected open porous structure formed by the plurality of interconnected polymeric fibers, fibrils, filaments and/or lamellae and a porosity of at least 50%; and the polymeric material (B) comprises a thermoplastic polycondensation polymer and is present in an amount of at most 30 wt. %, relative to the total weight of (A) and (B). The invention also relates to a process for preparing such a micro-porous membrane comprising steps wherein (i) a porous membrane carrier made of a first polymeric material (A) is impregnated with a polymer solution comprising a second polymeric material (B) in a solvent system (X), and (ii) the resulting impregnated membrane carrier is quenched in a non-solvent system (Y), thereby precipitating at least part of the second polymeric material (B).
摘要:
The invention provides a composition comprising core-shell nanoparticles, the nanoparticles comprising (a) cationic core material comprising latex; and (b) shell material comprising metal oxide.