Abstract:
An endoluminal device comprises a stent and a tubular graft supported by the stent. The graft has a proximal and a distal opening and comprises a synthetic material and a bioremodelable material. The bioremodelable material is disposed on an exterior surface in at least one band adjacent at least one of the proximal and distal openings.
Abstract:
Methods for coating medical devices for implantation within a body vessel are provided comprising providing a cylindrical container, placing a medical device inside the cylindrical container, and applying a polymer in liquid form inside the container.
Abstract:
This invention is directed to graft materials for implanting, transplanting, replacing, or repairing a part of a patient and to methods of making the graft materials. The present invention is also directed to stent grafts and endoluminal prostheses formed of the graft materials. More specifically, the present invention is a graft material which includes porous polymeric sheet, extracellular matrix material (ECM) disposed on at least a portion of the porous polymeric sheet and at least one polymer layer disposed on at least a portion of the ECM. The ECM may be in a gel form. The polymeric sheet and the polymer layer may be made from foam material and may comprise a polyurethane urea and a surface modifying agent such as siloxane.
Abstract:
The technology described herein relates to a stent graft and a method of making the stent wherein the stent comprises interconnected struts and is connected to the graft material by applying at least one band of polymer so as to cover at least a portion of at least some of the struts. A stent supported area is created by the stent's attachment to the graft material and the at least one band of polymer is applied so as to leave the majority of the stent supported area uncovered by the at least one band of polymer.
Abstract:
An endoluminal device comprises a stent and a tubular graft supported by the stent. The graft has a proximal and a distal opening and comprises a synthetic material and a bioremodelable material. The bioremodelable material is disposed on an exterior surface in at least one band adjacent at least one of the proximal and distal openings.
Abstract:
The present invention relates to methods of treating tissue of the human body, specially, methods of promoting cell proliferation and ingrowth around implantable medical devices. The methods include inserting an apparatus comprising asperities adapted to injure native tissue at a desired anchoring location, injuring the native tissue at the desired anchoring location with the apparatus to initiate an injury response in the native tissue to thereby promote cell proliferation and ingrowth; and implanting the medical device at the treatment location.
Abstract:
A stent graft adapted to telescopically receive a secondary stent graft characterized in that the stent graft comprises at least one socket communicating with at least one opening in the stent graft. The at least one socket comprises an elastic wall that forms a lumen with a stent at least partially encased within the wall. The socket can be adapted for use with stent grafts for implantantation in an aneurysm.
Abstract:
Methods for coating medical devices for implantation within a body vessel are provided comprising providing a cylindrical container, placing a medical device inside the cylindrical container, and applying a polymer in liquid form inside the container.
Abstract:
The technology described herein relates to a stent graft and a method of making the stent wherein the stent comprises interconnected struts and is connected to the graft material by applying at least one band of polymer so as to cover at least a portion of at least some of the struts. A stent supported area is created by the stent's attachment to the graft material and the at least one band of polymer is applied so as to leave the majority of the stent supported area uncovered by the at least one band of polymer.
Abstract:
An aortic stent-graft may include a tubular graft extending from a proximal end to a distal end, the graft comprising a proximal sealing portion and an intermediate portion, wherein a proximal end of the intermediate portion abuts the distal end of the proximal sealing portion. At least one sealing stent may be attached to the proximal sealing portion. A first fenestration window is disposed in the intermediate portion. The first fenestration window has a length determined by the equation L=1.23*D−24 millimeters, where L is the length of the first fenestration window. D is between about 24 millimeters and 45 millimeters.