摘要:
In one embodiment, a phase-change memory device has an oxidation barrier layer to protect against memory cell contamination or oxidation and a method of manufacturing the same. In one embodiment, a semiconductor memory device comprises a molding layer overlying a semiconductor substrate. The molding layer has a protrusion portion vertically extending from a top surface thereof. The device further includes a phase-changeable material pattern adjacent the protrusion portion and a lower electrode electrically connected to the phase-changeable material pattern.
摘要:
In one embodiment, a phase-change memory device has an oxidation barrier layer to protect against memory cell contamination or oxidation and a method of manufacturing the same. In one embodiment, a semiconductor memory device comprises a molding layer overlying a semiconductor substrate. The molding layer has a protrusion portion vertically extending from a top surface thereof. The device further includes a phase-changeable material pattern adjacent the protrusion portion and a lower electrode electrically connected to the phase-changeable material pattern.
摘要:
In a method of forming a ferroelectric capacitor, a lower electrode layer is formed on a substrate. A first crystalline layer is formed on the lower electrode layer. A ferroelectric layer is formed on the first crystalline layer. The first crystalline layer one of prevents a component of the ferroelectric layer from diffusing into the lower electrode layer and mitigates fatigue of the ferroelectric layer. An upper electrode layer is formed on the ferroelectric layer.
摘要:
A method of forming a ferroelectric layer is provided. A metal-organic source gas is provided into a chamber into which an oxidation gas is provided for a first time period to form ferroelectric grains on a substrate. A ferroelectric layer is formed by performing at least twice a step of providing a metal-organic source gas into the chamber during the first time period using a pulse method to grow the ferroelectric grains.
摘要:
A method for fabricating a cell string includes forming an interlayer dielectric layer, a sacrificial layer, and a semiconductor pattern on a semiconductor substrate, such that the interlayer dielectric layer and the sacrificial layer are formed in a first direction parallel with the semiconductor substrate, and such that the semiconductor pattern is formed in a second direction perpendicular to the semiconductor substrate, forming an opening by patterning the interlayer dielectric layer and the sacrificial layer, filling the opening with a metal, and annealing the semiconductor pattern having the opening filled with the metal.
摘要:
A method for fabricating a cell string includes forming an interlayer dielectric layer, a sacrificial layer, and a semiconductor pattern on a semiconductor substrate, such that the interlayer dielectric layer and the sacrificial layer are formed in a first direction parallel with the semiconductor substrate, and such that the semiconductor pattern is formed in a second direction perpendicular to the semiconductor substrate, forming an opening by patterning the interlayer dielectric layer and the sacrificial layer, filling the opening with a metal, and annealing the semiconductor pattern having the opening filled with the metal.
摘要:
An electromechanical transistor includes a source electrode and a drain electrode spaced apart from each other. A source pillar is between the substrate and the source electrode. A drain pillar is between the substrate and the drain electrode. A moveable channel is spaced apart from the source electrode and the drain electrode. A gate nano-pillar is between the moveable channel and the substrate. A first dielectric layer is between the moveable channel and the gate nano-pillar. A second dielectric layer is between the source pillar and the source electrode. A third dielectric layer is between the drain pillar and the drain electrode.
摘要:
A method of fabricating a ferroelectric device includes forming a ferroelectric layer on a substrate in a reaction chamber. An inactive gas is provided into the reaction chamber while unloading the substrate therefrom to thereby substantially inhibit formation of an impurity layer on the ferroelectric layer.
摘要:
A method of forming a ferroelectric layer is provided. A metal-organic source gas is provided into a chamber into which an oxidation gas is provided for a first time period to form ferroelectric grains on a substrate. A ferroelectric layer is formed by performing at least twice a step of providing a metal-organic source gas into the chamber during the first time period using a pulse method to grow the ferroelectric grains.
摘要:
A thin film layer, a heating electrode, a phase change memory including the thin film layer, and methods for forming the same. The method of forming the thin film layer by atomic layer deposition (ALD) may include injecting a titanium (Ti) source, a nitrogen (N) source, and/or an aluminum (Al) source onto a substrate at different flow rates and for different periods of time. The heating electrode may include a Ti1-xAlxN layer, wherein x is about 0.4
摘要翻译:薄膜层,加热电极,包括薄膜层的相变存储器及其形成方法。 通过原子层沉积(ALD)形成薄膜层的方法可以包括以不同的流速将钛(Ti)源,氮(N)源和/或铝(Al)源)注入到衬底上,并且 不同的时间段。 加热电极可以包括Ti 1-x Al 2 O x N层,其中x在接触相变的加热电极的第一部分处为约0.4