Abstract:
A method for forming a semiconductor structure. A semiconductor substrate including a plurality of dies mounted thereon is provided. The substrate includes a first portion proximate to the dies and a second portion distal to the dies. In some embodiments, the first portion may include front side metallization. The second portion of the substrate is thinned and a plurality of conductive through substrate vias (TSVs) is formed in the second portion of the substrate after the thinning operation. Prior to thinning, the second portion may not contain metallization. In one embodiment, the substrate may be a silicon interposer. Further back side metallization may be formed to electrically connect the TSVs to other packaging substrates or printed circuit boards.
Abstract:
The mechanisms of forming a molding compound on a semiconductor device substrate to enable fan-out structures in wafer-level packaging (WLP) are provided. The mechanisms involve covering portions of surfaces of an insulating layer surrounding a contact pad. The mechanisms improve reliability of the package and process control of the packaging process. The mechanisms also reduce the risk of interfacial delamination, and excessive outgassing of the insulating layer during subsequent processing. The mechanisms further improve planarization end-point. By utilizing a protective layer between the contact pad and the insulating layer, copper out-diffusion can be reduced and the adhesion between the contact pad and the insulating layer may also be improved.
Abstract:
The mechanisms for forming a multi-chip package described enable chips with different bump sizes being packaged to a common substrate. A chip with larger bumps can be bonded with two or more smaller bumps on a substrate. Conversely, two or more small bumps on a chip may be bonded with a large bump on a substrate. By allowing bumps with different sizes to be bonded together, chips with different bump sizes can be packaged together to form a multi-chip package.