Abstract:
A lithium ion (Li-ion) battery module includes a container with one or more partitions that define compartments within the container. Each of the compartments is configured to receive and hold a prismatic Li-ion electrochemical cell element and electrolyte. The Li-ion battery module also includes a cover configured to be disposed over the container to close the compartments. The container includes an electrically nonconductive polymeric material (e.g., plastic) with a nanomaterial applied to the polymeric material. The nanomaterial enhances the impermeability of the container to reduce ingress of moisture into the compartments and to reduce egress of the electrolyte from the compartments.
Abstract:
A lithium ion (Li-ion) battery cell includes a housing. The housing includes side walls coupled to and extending from a first portion of the housing to form an opening in the housing opposite the first portion of the housing. The housing includes an electrically nonconductive polymeric (e.g., plastic) material. An electrochemical cell element is disposed in the housing and immersed in electrolyte that is also disposed in the housing. The Li-ion battery cell also includes a cover including an electrically nonconductive polymeric material. The cover is disposed over the opening in the housing and sealed to the housing via a seal. The seal is configured to resist or prevent ingress of moisture into the housing and to resist or prevent egress of the electrolyte from the housing.
Abstract:
A lithium ion (Li-ion) battery cell includes a prismatic housing that includes four sides formed by side walls coupled to and extending from a bottom portion of the housing. The housing is configured to receive and hold a prismatic Li-ion electrochemical cell element. The housing includes an electrically nonconductive polymeric (e.g., plastic) material. Additionally, a heat sink is overmolded by the polymeric material of the housing, such that the heat sink is retained in an outer portion of the sides of the housing and the heat sink is exposed along the bottom portion of the housing.
Abstract:
A lithium ion (Li-ion) battery module includes a container with one or more partitions that define compartments within the container. Each of the compartments is configured to receive and hold a prismatic Li-ion electrochemical cell element, and a cover is configured to be disposed over the container to close the compartments. The container includes a polymer blend including a base polymer and one or more additives blended into the base polymer. The base polymer is electrically nonconductive and the one or more additives are configured to increase a thermal conductivity of the container to promote transfer of heat generated from the electrochemical cell elements through the container.
Abstract:
Embodiments describe a battery system that includes a first battery module coupled to a regenerative braking system and a control module that controls operation of the battery system by: determining a predicted driving pattern over a prediction horizon using a driving pattern recognition model based in part on a battery current and a previous driving pattern; determining a predicted battery resistance of the first battery module over the prediction horizon using a recursive battery model based in part on the predicted driving pattern, the battery current, a present bus voltage, and a previous bus voltage; determining a target trajectory of a battery temperature of the first battery module over a control horizon using an objective function; and controlling magnitude and duration of electrical power supplied from the regenerative such that a predicted trajectory of the battery temperature is guided toward the target trajectory of the battery temperature during the control horizon.
Abstract:
The present disclosure includes a system having a battery module, where the battery module includes a housing having a top side, a lateral side, and an edge extending along and between the top side and the lateral side. The battery module also includes electrochemical cells disposed in the housing, and a heat sink disposed on the lateral side of the housing. A fan is disposed over the top side of the housing. A hood includes a first hood portion disposed over the top side of the housing and the fan and a second hood portion coupled to the first hood portion and disposed over the lateral side of the housing, where the hood defines an airspace between the hood and the housing and the hood is configured to guide an airflow through the airspace from the fan on the top side of the housing, over the edge between the top side and the lateral side of the housing, and over the heat sink disposed on the lateral side of the housing.
Abstract:
The present disclosure relates to thermal management in battery cells and battery modules. A thermal assembly for a battery cell includes a battery cell having a battery cell packaging and a thermal pouch formed from a continuous carbon-based thermal film. The thermal pouch is configured to contact both the battery cell packaging and one or more thermal management features of a battery module with a first side of the carbon-based thermal film. Accordingly, the first side of the carbon-based thermal film is configured to provide uninterrupted thermal pathways along the first side of the carbon-based thermal film between the battery cell packaging and the one or more thermal management features of the battery module.
Abstract:
A system includes a battery module having electrochemical cells and a housing configured to receive the electrochemical cells. The housing includes a first sidewall having a first surface and a second surface. The housing also includes cooling channels extending through the first sidewall of the housing from the first surface to the second surface, where the cooling channels are configured to permit fluid flow through the cooling channels for cooling the electrochemical cells. Each of the cooling channels includes a first cross-sectional area across the first surface of the first sidewall and a second cross-sectional area across the second surface of the first sidewall, where the first cross-sectional area is not equal to the second-cross sectional area. Each of the cooling channels also includes a tapered portion extending between the first-cross sectional area and the second cross-sectional area.
Abstract:
A lithium ion (Li-ion) battery module includes a container with one or more partitions that define compartments within the container. Each of the compartments is configured to receive and hold a prismatic Li-ion electrochemical cell element, and a cover is configured to be disposed over the container to close the compartments. The container includes a polymer blend including a base polymer and one or more additives blended into the base polymer. The base polymer is electrically nonconductive and the one or more additives are configured to increase a thermal conductivity of the container to promote transfer of heat generated from the electrochemical cell elements through the container.
Abstract:
A system includes a battery module having electrochemical cells and a housing configured to receive the electrochemical cells. The housing includes a first sidewall having a first surface and a second surface. The housing also includes cooling channels extending through the first sidewall of the housing from the first surface to the second surface, where the cooling channels are configured to permit fluid flow through the cooling channels for cooling the electrochemical cells. Each of the cooling channels includes a first cross-sectional area across the first surface of the first sidewall and a second cross-sectional area across the second surface of the first sidewall, where the first cross-sectional area is not equal to the second-cross sectional area. Each of the cooling channels also includes a tapered portion extending between the first-cross sectional area and the second cross-sectional area.