Abstract:
A semiconductor package includes a wire board, a plurality of semiconductor chips configured to be stacked over the wire board and to be electrically coupled with the wire board, and at least one shielding unit configured to be formed between the plurality of semiconductor chips and to be maintained at a predetermined voltage.
Abstract:
A method of fabricating an organic electroluminescent device (OELD) according to the present invention has steps of repairing a pixel region by irradiating a laser on a drain contact hole of a passivation layer in a pixel region in need of the repair; and disabling the connection between an organic electroluminescent diode and a drain electrode of a driving thin film transistor (TFT), where the pixel region of the OELD has i) the driving TFT comprising the drain electrode, ii) the passivation layer covering the driving TFT, while comprising the drain contact hole exposing the drain electrode of the driving TFT, and iii) the organic electroluminescent diode connected to the drain electrode of the driving TFT via the drain contact hole.
Abstract:
A semiconductor integrated circuit can include a first voltage pad, a second voltage pad, and a voltage stabilizing unit that is connected between the first voltage pad and the second voltage pad. The first voltage pad can be connected to a first internal circuit, and the second voltage pad can be connected to a second internal circuit.
Abstract:
Methods of fabricating semiconductor devices include forming a transistor on and/or in a semiconductor substrate, wherein the transistor includes a source/drain region and a gate pattern disposed on a channel region adjacent the source/drain region. An insulating layer is formed on the transistor and patterned to expose the source/drain region. A semiconductor source layer is formed on the exposed source/drain region and on an adjacent portion of the insulating layer. A metal source layer is formed on the semiconductor source layer. Annealing, is performed to form a first metal-semiconductor compound region on the source/drain region and a second metal-semiconductor compound region on the adjacent portion of the insulating layer. The first metal-semiconductor compound region may be thicker than the second metal-semiconductor compound region. The metal source layer may include a metal layer and a metal nitride barrier layer.
Abstract:
A semiconductor package includes a wire board, a plurality of semiconductor chips configured to be stacked over the wire board and to be electrically coupled with the wire board, and at least one shielding unit configured to be formed between the plurality of semiconductor chips and to be maintained at a predetermined voltage.
Abstract:
The present invention relates to a light absorbent for organic anti-reflection coating formation, and an organic anti-reflection film composition containing the same. The light absorbent for organic anti-reflection film formation according to the present invention is a compound of the following formula (1a), a compound of the following formula (1b), a mixture of compounds of the formulas (1a) and (1b), or a compound of formula (2): wherein in the formulas (1a) and (1b), X is a compound selected from the group consisting of a substituted or unsubstituted cyclic compound having 1 to 20 carbon atoms, aryl, diaryl ether, diaryl sulfide, diaryl sulfoxide and diaryl ketone; and R1 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, or an aryl group having 1 to 14 carbon atoms; wherein in the formulas (2), X is a compound selected from the group consisting of a substituted or unsubstituted cyclic compound having 1 to 20 carbon atoms, aryl, diaryl ether, diaryl sulfide, diaryl sulfoxide and diaryl ketone; and R1 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, or an aryl group having 1 to 14 carbon atoms.Furthermore, the organic anti-reflection film composition according to the present invention includes a light absorbent represented by the formula (1a), a polymer, a thermal acid generating agent, a crosslinking agent and a solvent.An anti-reflection film using the compound of the present invention exhibits excellent adhesiveness and storage stability, and excellent resolution in both C/H patterns and L/S patterns. Also, the patterning method of the invention has an excellent process window, and thus excellent pattern profiles can be obtained irrespective of the type of substrate.
Abstract:
A driving method for a plasma display panel capable of stabilizing a sustain discharge. The driving method for a plasma display panel according to exemplary embodiments of the present invention includes applying a signal gradually rising to a first voltage to scan electrodes during a first period of a sustain period, and applying a second voltage to sustain electrodes during the first period.
Abstract:
A method of driving a frame of plasma display device having a first electrode, a second electrode, and an address electrode, the method including gradually decreasing a voltage of the second electrode from a second voltage to a third voltage and, while decreasing the voltage of the second electrode, supplying a vertical synchronization pulse and applying a first voltage to the first electrode, after the voltage of the second electrode reaches the third voltage, gradually increasing the voltage of the second electrode from a fifth voltage to a sixth voltage while a fourth voltage is applied to the first electrode, and, after the voltage of the second electrode reaches the sixth voltage, gradually decreasing the voltage of the second electrode from an eighth voltage to a ninth voltage while a seventh voltage is applied to the first electrode.
Abstract:
The present invention provides an organic anti-reflection coating composition comprising a copolymer represented by the following Formula 1, a light absorbent, a thermal acid generating agent, and a curing agent: wherein R1, R2 and R3 are each independent to each; R1 represents hydrogen or an alkyl group having 1 to 10 carbon atoms; R2 represents hydrogen, an alkyl group having 1 to 10 carbon atoms or an arylalkyl group having 1 to 20 carbon atoms; R3 is hydrogen or a methyl group; m and n are repeating units in the main chain, while m+n=1, and they have values of 0.05
Abstract translation:本发明提供一种有机防反射涂料组合物,其包含由下式1表示的共聚物,光吸收剂,热酸产生剂和固化剂:其中R1,R2和R3各自独立; R1表示氢或碳原子数1〜10的烷基。 R 2表示氢,碳原子数1〜10的烷基或碳原子数1〜20的芳烷基。 R3是氢或甲基; m和n是主链中的重复单元,而m + n = 1,并且它们具有0.05
Abstract:
The invention concerns an adhesive film for stacking chips which enables chips to be stacked in layers without using a separate spacer usually provided to keep a given distance between wires of an upper chip and a lower chip to have the same area. The adhesive film of the invention has an intermediate adhesive layer of thermoplastic phenoxy resin on both side of which a thermosetting adhesive layer of epoxy resin is placed, respectively, to make a three-layer structure, the thermoplastic phenoxy resin comprising UV curable small molecule compounds. The adhesive film of the invention is a multi-layered adhesive film produced by a method of comprising the steps of achieving compatibility on an interface between the thermosetting epoxy resin and thermoplastic phenoxy resin and then directly forming a phenoxy film of a high elastic modulus through UV curing in an adhesive film. With such a configuration, the adhesive film for stacking semiconductor chips according to the invention enables the semiconductor silicone chips to be stacked in 3 or more layers without using a separate spacer between chips in order to keep a wire distance between upper and lower chips in stacking the chips. With the configuration, it is advantageous that reliability of semiconductors is not lowered because adhesiveness is kept despite of a repeated process of stacking chips subject to high temperature.