Abstract:
Disclosed are a 5-(2,6-dioxyphenyl)tetrazole-containing polymer, a method for preparing the same, a membrane containing the same and an electrochemical device, particularly a high temperature polymer electrolyte membrane fuel cell, including the membrane. The membrane containing the 5-(2,6-dioxyphenyl)tetrazole-containing polymer is capable of providing high proton conductivity and exhibiting good mechanical properties, thereby capable of providing superior fuel cell performance. Accordingly, the membrane may be usefully used in an electrochemical device, particularly a fuel cell, more particularly a high temperature polymer electrolyte membrane fuel cell.
Abstract:
Provided is a method for preparing a catalyst for a dehydrogenation reaction of formate and a hydrogenation reaction of bicarbonate, the method including: adding a silica colloid to a polymerization step of polymerizing aniline and reacting the resulting mixture to form a poly(silica-aniline) composite; carbonizing the corresponding poly(silica-aniline) composite under an atmosphere of an inert gas; removing silica particles from the corresponding poly(silica-aniline) composite to form a polyaniline-based porous carbon support; and fixing palladium particles on the corresponding polyaniline-based porous carbon support to prepare the catalyst.
Abstract:
Disclosed is a homogeneous catalyst having a single phase of Perovskite oxide, wherein at least one doping element is substituted at site A, site B or sites A and B in ABO3 Perovskite type oxide so that the wettability with a liquid molten carbonate electrolyte may be decreased. The catalyst may have high catalytic activity, inhibit catalyst poisoning caused by creepage and evaporation of a liquid molten carbonate electrolyte, maintain high reaction activity for a long time, provide high methane conversion, and allow production of synthetic gas having a high proportion of hydrogen.
Abstract:
A polymer electrolyte membrane fuel cell is provided. The polymer electrolyte membrane fuel cell includes a phosphoric acid-doped polyimidazole electrolyte membrane and a complex catalyst. In the complex catalyst, an alloy or mixture of a metal and a chalcogen element is supported on a carbon carrier. The polymer electrolyte membrane fuel cell exhibits further improved long-term operation, power generation efficiency, and operational stability at high temperature. The complex catalyst can be produced by a simple method.
Abstract:
Provided is a method for preparing nickel-aluminum alloy powder at low temperature, which is simple and economical and is capable of solving the reactor corrosion problem. The method for preparing nickel-aluminum alloy powder at low temperature includes: preparing a powder mixture by mixing nickel powder and aluminum powder in a reactor and adding aluminum chloride into the reactor (S1); vacuumizing the inside of the reactor and sealing the reactor (S2); and preparing nickel-aluminum alloy powder by heat-treating the powder mixture in the sealed reactor at low temperature (S3).
Abstract:
Disclosed are a method for supplying molten carbonate fuel cell with electrolyte and a molten carbonate fuel cell using the same, wherein a molten carbonate electrolyte is generated from a molten carbonate electrolyte precursor compound in a molten carbonate fuel cell and is supplied to the molten carbonate fuel cell.
Abstract:
Provided are a ceria-based composition having an undoped or metal-doped ceria and an undoped or metal-doped bismuth oxide, wherein the undoped or metal-doped bismuth oxide is present in an amount equal to or more than about 10 wt % and less than about 50 wt % based on the total weight of the ceria-based composition, and at least one selected from the ceria and the bismuth oxide is metal-doped. The ceria-based composition may ensure high sintering density even at a temperature significantly lower than the known sintering temperature of about 1400° C., i.e., for example at a temperature of about 1000° C. or lower, and increase ion conductivity as well.
Abstract:
Provided are: a dry reforming catalyst, in which a noble metal (M) is doped in a nickel yttria stabilized zirconia complex (Ni/YSZ) and an alloy (M-Ni alloy) of the noble metal (M) and nickel is formed at Ni sites on a surface of the nickel yttria stabilized zircona (YSZ); a method for producing the dry reforming catalyst using the noble metal/glucose; and a method for performing dry reforming using the catalyst. The present invention can exhibit a significantly higher dry reforming activity as compared with Ni/YSZ catalysts. Furthermore, the present invention can have an improved long-term performance by suppressing or preventing the deterioration. Furthermore, the preparing method is useful in performing the alloying of noble metal with Ni at Ni sites on the Ni/YSZ surface and can simplify the preparing process, and thus is suitable in mass production.
Abstract:
Provided are a method for preparing a Nafion membrane having a through-pore free monolithic porous structure throughout the bulk of the membrane through a one-step process very easily and a Nafion membrane having a through-pore free monolithic porous structure obtained from the method. The Nafion membrane having such a porous structure may have an increased surface area, and thus may improve the membrane/catalyst interfacial area and transport characteristics.
Abstract:
Provided is a catalyst for an oxygen reduction reaction, including an alloy in which two metals are mixed, in which the corresponding alloy is an alloy of iridium (Ir); and silicon (Si), phosphorus (P), germanium (Ge), or arsenic (As). The corresponding catalyst for the oxygen reduction reaction may have excellent price competitiveness while exhibiting a catalytic activity which is equal to or similar to that of an existing Pt catalyst. Accordingly, when the catalyst is used, the amount of platinum catalyst having low price competitiveness may be reduced, so that a production unit cost of a system to which the corresponding catalyst is applied may be lowered.