Abstract:
A semiconductor optical element has an active layer including quantum dots. The density of quantum dots in the resonator direction in a portion of the active layer in which the density of photons is relatively high is increased relative to the density of quantum dots in a portion of the active layer in which the density of photons is relatively low.
Abstract:
A semiconductor laser according to the present invention comprises: a substrate; an n-cladding layer disposed on the substrate; an active layer disposed on the n-cladding layer; a p-cladding layer disposed on the active layer and forming a waveguide ridge; and a diffraction grating layer disposed between the active layer and the n-cladding layer or the p-cladding layer and including a phase shift structure in a part of the diffraction grating layer in an optical waveguide direction. The width of the p-cladding layer is increased in a portion corresponding to the phase shift structure of the diffraction grating layer.
Abstract:
Input light is split by an input-light splitter into first split light and second split light. A multiplex-interference portion performs multiplex interference of the first split light and the second split light to generate intensity-modulated light having a first wavelength. A phase modulation portion is fed with the intensity-modulated light and continuous wave light having a wavelength equal to a second wavelength, and performs cross-phase modulation of the continuous wave light in accordance with phase modulation of the input light.
Abstract:
A semiconductor laser device according to the present invention comprises an optical waveguide laminated structure having: a first first-cladding layer made up of a p-InP layer; a double heterojunction layer of p-AlGaInAs; a second first-cladding layer made up of a p-InP layer; a first light confining layer of p-InGaAsP; an active layer of InGaAsP having a quantum well structure; a second light confining layer of n-InGaAsP; and a second-cladding layer made up of an n-InP layer, and heterojunctions of the second kind are formed at the interfaces between the first first-cladding layer and the double heterojunction layer and between the double heterojunction layer and the second first-cladding layer.
Abstract:
A dielectric sheet is attached to the inner surface of the portable telephone housing. The dielectric sheet extends in the area between the user's head and a whip antenna of the portable telephone. The real part and the imaginary part of the relative dielectric constant of the dielectric sheet is properly selected such that the dielectric sheet can reduce SAR (Specific Absorption Rate) and improve antenna efficiency.
Abstract:
An electroabsorption semiconductor optical modulator includes a light absorption layer for generating a modulated light beam by absorbing an incident light beam. A well layer in the light absorption layer, accumulates charge carriers generated by the light absorption layer. The charge carriers are guided and released from the well layer upon receipt of an incident excitation light beam having a wavelength corresponding to the bandgap energy of the well layer. The incident light beam is modulated by changes in absorption coefficient in response to an externally applied voltage. The modulator responds to a high-intensity incident light beam at high frequency, free from deterioration of extinction characteristics, and has good transmission characteristics.
Abstract:
A semiconductor device has a first semiconductor layer, a second semiconductor layer, and an active layer sandwiched between the first and the second semiconductor layer and emits light from the active layer when a voltage is applied across the first and the second semiconductor layer. The semiconductor device includes an anode on the first semiconductor layer, an insulating film on the anode, and a screen electrode on the insulating film covering at least part of the anode. The second semiconductor layer is grounded and the screen electrode is electrically connected to the grounded second semiconductor layer. The screen electrode screens the anode to prevent flow of a leakage current between the first and second semiconductor layers due to electromagnetic waves.
Abstract:
This invention relates to a method of producing a molded transparent covering member. The steps of the method comprise providing a silicon rubber material and a fluorescent substance together to form a material to be molded in a space between an inner surface of an upper mold and an outer surface of a lower mold; sand-blasting at least one of the inner surface of said upper mold and the outer surface of the lower mold; and injecting the material into the space formed between upper mold and the lower mold.
Abstract:
An LED device is provided that has an excellent color rendering property and no toxicity and does not increase production costs more than necessary. A covering member is also provided used for such a device. The LED device comprises a light-emitting element for emitting light in a blue to green region and a fluorescent substance containing a red phosphor for converting the wavelength of the light emitted from the light-emitting element to another wavelength. The red phosphor is CaS activated by Eu or a phosphor expressed by the general formula AEu(1−x)LnxB2O8, wherein A is an element selected from the group consisting of Li, K, Na and Ag; Ln is an element selected from the group consisting of Y, La and Gd; and B is W or Mo; and x is number equal to or larger than 0, but smaller than 1.
Abstract:
A Mach-Zehnder modulator intensity modulating signal light using a simple drive circuit for the modulating voltage. The modulator includes two waveguides with respective multiple quantum well (MQW) structures. Well layers of the MQW structures of the two optical waveguides have different thicknesses or are made from different materials so the phase of light propagating through one waveguide advances and through the other waveguide is delayed in response to the same applied voltage. The phase-changed light signals are combined as an output light signal that is intensity modulated.