摘要:
A method of manufacturing fin-type field effect transistors (FinFETs) forms a silicon layer above a substrate, forms a mask pattern above the silicon layer using a multi-step mask formation process, patterns the silicon layer into silicon fins using the mask pattern such that the silicon fins only remain below the mask pattern, removes the mask pattern to leave the fins on the substrate, and forms gate conductors over the fins at a non-perpendicular angle to the fins.
摘要:
A circuit includes a resistance-capacitance (RC) structure connected to a first set of transistors and a second set of transistors that perform the same logical function as the first set of transistors. The first set of transistors have thinner gate oxides than the second set of transistors. The RC structure drains an electric field from the first set of transistors, such that the first set of transistors are on only during initial transistor switching. In other words, the RC structure turns off the first set of transistors after transistor switching is completed. Also, the first set of transistors and the second set of transistors share common inputs and outputs. The first set of transistors exhibit higher tunneling currents than the second set of transistors. The thinner gate oxides of the first set of transistors cause the first set of transistors to exhibit higher device currents than the second set of transistors. The RC structure includes a capacitor connected to a gate of the first set of transistors and a resistor connected to the capacitor and to ground.
摘要:
A circuit for selectively controlling the slew rate of a signal on a data line. A capacitor is connected at one end to a common terminal of a power supply and to a switching circuit. The switching circuit advantageously connects the capacitor to the data line in response to a control pulse, capacitively loading the data line so that slew rate is decreased. When the control pulse assumes a different state, the capacitor is connected by the switching circuit to a terminal of a power supply, and acts as a decoupling capacitor. The dual role of the capacitor provides for efficient circuit layout by utilizing one component in two functions.
摘要:
A semiconductor device and method of manufacturing is disclosed which has a tensile and/or compressive strain applied thereto. The method includes forming at least one trench in a material; and filling the at least one trench by an oxidation process thereby forming a strain concentration in a channel of a device. The structure includes a gate structure having a channel and a first oxidized trench on a first of the channel, respectively. The first oxidized trench creates a strain component in the channel to increase device performance.
摘要:
At least one conductive via structure is formed from an interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer to a bottom semiconductor layer. The shallow trench isolation structure laterally abuts at least two field effect transistors that function as a radio frequency (RF) switch. The at least one conductive via structure and the at interconnect-level metal line may provide a low resistance electrical path from the induced charge layer in a bottom semiconductor layer to electrical ground, discharging the electrical charge in the induced charge layer. The discharge of the charge in the induced charge layer thus reduces capacitive coupling between the semiconductor devices and the bottom semiconductor layer, and thus secondary coupling between components electrically disconnected by the RF switch is reduced.
摘要:
Manufacturing a semiconductor structure including: forming a seed material on an insulator layer; forming a graphene field effect transistor (FET) on the seed material; and forming an air gap under the graphene FET by removing the seed material.
摘要:
The disclosure relates generally to nano-filters and methods of forming same, and methods of filtration. The nano-filter includes a substrate and at least one nanowire structure located between an inlet and an outlet. The nanowire structure may include a plurality of vertically stacked horizontal nanowires.
摘要:
A reusable substrate and method for forming single crystal silicon solar cells are described. A method of forming a photovoltaic cell includes forming an intermediate layer on a monocrystalline silicon substrate, forming a monocrystalline silicon layer on the intermediate layer, and forming electrical features in the monocrystalline silicon layer. The method further includes forming openings in the monocrystalline silicon layer, and detaching the monocrystalline silicon layer from the substrate by selectively etching the intermediate layer through the openings.
摘要:
Solutions for forming stress optimizing contact bars and contacts are disclosed. In one aspect, a semiconductor device is disclosed including an n-type field effect transistor (NFET) having source/drain regions; a p-type field effect transistor (PFET) having source/drain regions; a stress inducing layer over both the NFET and the PFET, the stress inducing layer inducing only one of a compressive stress and a tensile stress; a contact bar extending through the stress inducing layer and coupled to at least one of the source/drain regions of a selected device of the PFET and the NFET to modify a stress induced in the selected device compared to a stress induced in the other device; and a round contact extending through the stress inducing layer and coupled to at least one of the source/drain regions of the other device of the PFET and the NFET.
摘要:
Disclosed is a semiconductor structure, which includes a non-planar varactor having a geometrically designed depletion zone with a taper, as to provide improved Cmax/Cmin with low series resistance. Because of the taper, the narrowest portion of the depletion zone can be designed to be fully depleted, while the remainder of the depletion zone is only partially depleted. The fabrication of semiconductor structure may follow that of standard FinFET process, with a few additional or different steps. These additional or different steps may include formation of a doped trapezoidal (or triangular) shaped silicon mesa, growing/depositing a gate dielectric, forming a gate electrode over a portion of the mesa, and forming a highly doped contact region in the mesa where it is not covered by the gate electrode.