Abstract:
The present invention provides a method for producing polythiophene star copolymer capable of being self-doped by an external stimulus, which includes the steps of: forming a polythiophene macroinitiator made by introducing a living radical polymerizable functional group into an end of polythiophene or a derivative thereof; forming through living radical polymerization a polymer macroinitiator for providing by an external stimulus at least a dopant selected from the group consisting of sulfonic acid radical, carboxylic acid radical and phosphoric acid radical; and polymerizing the polythiophene macroinitiator added with the polymer macroinitiator and at least one kind of divinyl monomer to produce the polythiophene star copolymer. The polythiophene star copolymer capable of being self-doped by an external stimulus according to the present invention is a self-doped material to stably increase conductivity, and can be used as a material for a conductive film.
Abstract:
The present invention relates to an etching composition and a method of producing a MXene. The etching composition of the present invention can stably and quickly produce a MXene at high temperature. The etching composition of the present invention can produce a MXene in high yield. The etching composition of the present invention can easily produce various types of MXenes. A method using the etching composition of the present invention can produce a MXene having excellent electrochemical and mechanical properties.
Abstract:
The specification relates an ionomer comprising a compound derived from N,N-diallylamine and a method for preparing the same. The ionomer according to one embodiment of the disclosure has an effect of providing excellent battery performance by controlling the ion exchange capability in a wide range while having excellent alkaline durability.
Abstract:
The present disclosure relates to 2-dimensional MXenes surface-modified with catechol derivatives, a method for preparing the same, MXene organic ink including the same, and use thereof (e.g. flexible electrodes, conducive cohesive/adhesive materials, electromagnetic wave-shielding materials, flexible heaters, sensors, energy storage devices). Particularly, the simple, fast, and scalable surface-functionalization process of MXenes using catechol derivatives (e.g. ADOPA) organic ligands significantly improves the dispersion stability in various organic solvents (including ethanol, isopropyl alcohol, acetone and acetonitrile) and produces highly concentrated organic liquid crystals of various MXenes (including Ti2CTx, Nb2CTx, V2CTx, Mo2CTx, Ti3C2Tx, Ti3CNTx, Mo2TiC2Tx, and Mo2Ti2C3Tx). Such products offer excellent electrical conductivity, improved oxidation stability, excellent coating and adhesion abilities to various hydrophobic substrates, and composite processability with hydrophobic polymers. This finding will lead to further studies on the structures, properties, and physics of the organic MXene liquid crystals and their practical applications.
Abstract:
The present invention relates to a 2-dimensional MXene particle surface-modified with a functional group comprising a saturated or unsaturated hydrocarbon, a preparation method thereof, and a use thereof (e.g., a conductive film).
Abstract:
Provided are a catalyst composition with improved processability and chemical warfare agent degradation ability, a film composite manufactured by casting the same, and a preparation method thereof. Specifically, provided are a catalyst composition including a copolymer of a first polymer and a second polymer; and a metal-organic framework (MOF), and a film composite including the same, wherein processability and catalytic activity are improved.
Abstract:
A method of preparing a polymer hollow particle, a low-specific gravity and monodispersed polymer hollow particle of various shapes prepared using the method, and a composite including the polymer hollow particle are provided. The method includes: a first step of providing, onto a substrate including a engraved pattern, at least one expandable particle comprising a foaming agent-containing expandable core and a thermoplastic polymer shell; a second step of removing an excess of the at least one expandable particle from a resulting product of the first step; a third step of expanding the at least one expandable particle in the engraved pattern of the substrate by thermally treating a resulting product of the second step; and a fourth step of separating, from the substrate, expanded hollow polymer particles which are a resulting product of the third step.
Abstract:
Provided are a CNT-polymer complex and a process for preparing the same. The CNT-polymer complex includes carbon nanotubes (CNT) coated with a block copolymer of a conjugated polymer and a non-conjugated polymer, wherein the non-conjugated polymer comprises at least one monomer selected from the group consisting of styrene, butadiene, isoprene, methacryl, acryl, acryl amide, methacryl amide, acrylonitrile, vinyl acetate, vinyl pyridine and vinyl pyrrolidone in which at least one selected from the group consisting of a sulfone group, carboxyl group, acryl group and phosphate group is protected with a protective group, and provides at least one dopant selected from the group consisting of a sulfone group, carboxyl group, acryl group and phosphate group by external stimuli so that self-doping is allowed; and the complex is soluble to an organic solvent in a neutral state but is insoluble to any solvent after subjecting it to external stimuli.