Abstract:
A method for mixing a fluid includes: dispensing a first volume of a fluid into a flexible container, the flexible container being at least partially disposed within the chamber of a support housing; repeatedly moving the support housing and the flexible container contained therein so as to mix the first volume of fluid within the flexible container; adding further fluid into the flexible container after moving the support housing to form a second volume of fluid; and manipulating a mixing element within the flexible container so as to mix the second volume of fluid.
Abstract:
A fluid mixing system includes a flexible bag having a first end, an opposing second end, and an interior surface bounding a compartment; a retainer coupled to the second end of the flexible bag, the retainer having a retention cavity formed thereon that communicates with the compartment of the flexible bag; and an elongated member having a first end rotatably coupled to the first end of the flexible bag and an opposing second end freely disposed within the retention cavity of the retainer so that the second end of the elongated member can rotate within the retention cavity relative to the retainer.
Abstract:
A method for coupling a tube to a tube fitting includes radially outwardly expanding a tubular compression collar from a constricted state to an expanded state, the compression collar having a throughway extending there through and being made of a resiliently flexible material. An end of the tube is inserted within the throughway of the expanded compression collar, the tube bounding a passage. A tube fitting is inserted within the passage of the tube. The compression collar is allowed to resiliently rebound back towards the constricted state so that the compression collar pushes the tube against the tube fitting.
Abstract:
A method of dispensing a fluid includes coupling a manifold to a fluid source, the manifold including at least portions of opposing flexible sheets welded together to form a fluid flow path therebetween; passing a fluid from the fluid source through the fluid flow path of the manifold and into a plurality of flexible bags coupled to the manifold; sealing closed each of the flexible bags; progressively collapsing the fluid flow path along a length of the manifold so as to force a portion of the fluid remaining within the fluid flow path into one of the flexible bags before all of the flexible bags are sealed closed; and removing each sealed bag from the manifold.
Abstract:
A method for mixing a fluid includes: dispensing a first volume of a fluid into a flexible container, the flexible container being at least partially disposed within the chamber of a support housing; repeatedly moving the support housing and the flexible container contained therein so as to mix the first volume of fluid within the flexible container; adding further fluid into the flexible container after moving the support housing to form a second volume of fluid; and manipulating a mixing element within the flexible container so as to mix the second volume of fluid.
Abstract:
A fluid mixing system that can be used as a bioreactor or fermentor can include a stand and a support housing pivotably mounted to the stand. The support housing bounds a chamber into which a container assembly is removably disposed. The container assembly includes a flexible bag bounding a compartment adapted to hold a fluid and a mixing element disposed within the compartment. The support housing can be tilted relative to the stand for ease in insertion of the container assembly. The support housing can also be repeatedly rocked relative to the stand form mixing fluid within the container assembly.
Abstract:
A fluid mixing system includes a container, such as a flexible bag, bounding a compartment. A flexible drive line is disposed within the compartment, the drive line having a first end rotatably connected to a first end of the container and an opposing second end rotatably connected to a second end of the container. At least one mixing element, such as an impeller, is coupled with the flexible drive line. Rotation of the drive line facilitates rotation of the impeller within the container.
Abstract:
A method of mixing a fluid includes at least partially unfolding a collapsible bag bounding a compartment, the collapsible bag containing in the compartment at least a portion of an elongated drive line or drive shaft and an impeller secured to the drive line or drive shaft, the impeller including a plurality of impeller blades that are pivotable relative to the drive line or drive shaft, at least one of the plurality of impeller blades being in a collapsed position. A fluid is delivered into the compartment of the collapsible bag. The drive line or drive shaft is then rotated so as to rotate the impeller within the compartment and mix the fluid therein, the at least one of the plurality of impeller blades pivoting from the collapsed position to an expanded position as the impeller is rotated within the compartment.
Abstract:
A method for mixing a fluid includes: dispensing a first volume of a fluid into a flexible container, the flexible container being at least partially disposed within the chamber of a support housing; repeatedly moving the support housing and the flexible container contained therein so as to mix the first volume of fluid within the flexible container; adding further fluid into the flexible container after moving the support housing to form a second volume of fluid; and manipulating a mixing element within the flexible container so as to mix the second volume of fluid.
Abstract:
A method for coupling a tube to a tube fitting includes radially outwardly expanding a tubular compression collar from a constricted state to an expanded state, the compression collar having a throughway extending there through and being made of a resiliently flexible material. An end of the tube is inserted within the throughway of the expanded compression collar, the tube bounding a passage. A tube fitting is inserted within the passage of the tube. The compression collar is allowed to resiliently rebound back towards the constricted state so that the compression collar pushes the tube against the tube fitting.