Abstract:
An output circuit includes: an output switch including a gate terminal, a drain terminal coupled to an external I/O bus, and a well terminal; a well control circuit, having a well terminal coupled to the well terminal of the output switch, to maintain a well voltage of the output switch at a level not less than a greater of a first voltage and a second voltage; and a gate control circuit coupled to the gate terminal and a the drain terminal of the output switch and to the external I/O bus, and operable to turn off the output switch, to prevent current flow through the output switch from the external I/O bus when an operating voltage of the output circuit is not applied to the output switch, and a bus voltage from an external device is present on the external I/O bus.
Abstract:
Current drivers and biasing circuitry at least partly compensate for manufacturing variations and environmental variations such as supply voltage, temperature, and fabrication process.
Abstract:
A data serializer, a latch data device using the same and a controlling method thereof are provided. The data serializer includes at least one data buffer and a de-skew buffer. The data buffer at least receives an inputting data and a controlling signal. An outputting signal and a complementary outputting signal, which is complementary to the outputting signal, are formed when the controlling signal is at a predetermined level. The de-skew buffer receives the complementary outputting signal to accelerate or slow down forming the outputting signal.
Abstract:
Systems, methods, circuits, and apparatus including computer-readable mediums for testing bonding pads in multi-die packages, e.g., chiplet systems. An example integrated circuit device includes an integrated circuit, first type bonding pads and second type bonding pads. Each of the first type bonding pads is electrically connected to the integrated circuit and configured to be electrically connected to a corresponding external integrated circuit device. Each of the second type bonding pads is configured to have no electrical connection with the corresponding external integrated circuit device. Each of the first type bonding pads is configured to be electrically connected to a corresponding one of the second type bonding pads. A number of the first type bonding pads can be larger than a number of the second type bonding pads. Each of the second type bonding pads can have a larger pad area for probing than each of the first type bonding pads.
Abstract:
A memory device and an operation method thereof are provided. The memory device comprises: a memory array; a decoding circuit coupled to the memory array, the decoding circuit including a plurality of first transistors, a plurality of second transistors and a plurality of inverters, the first transistors and the second transistors are paired; and a controller coupled to the decoding circuit, wherein the paired first transistors and the paired second transistors are respectively coupled to a corresponding one inverter among the inverters, and respectively coupled to a corresponding one among a plurality of local bit lines or a corresponding one among a plurality of local source lines; the first transistors are coupled to a global bit line; and the second transistors are coupled to a global source line.
Abstract:
A data receiving stage circuit of a memory circuit receives a serial input signal and a chip enable signal. A data writing circuit of the memory circuit generates at least one of a command signal and a data signal according to the serial input signal. A power supply circuit of the memory circuit generates an operating voltage for a memory cell array to perform a data access operation. A data output stage circuit of the memory circuit outputs a readout data. A controller of the memory circuit performs a switching operation of an operating state of the memory circuit according to a change of the chip enable signal. The controller determines a disable or enable state of the data receiving stage circuit, the data writing circuit, the power supply circuit, and the data output stage circuit according to the operating state.
Abstract:
One aspect of the technology is an integrated circuit, comprising a bias circuit and a sense amplifier. The bias circuit has a diode-connected transistor and a first bias voltage. The first bias voltage is represented by a first term inversely dependent on a first mobility of charge carriers of the diode-connected transistor and inversely dependent on a first gate-to-channel dielectric capacitance of the diode-connected transistor. The sense amplifier is coupled to another transistor that has a gate coupled to the first bias voltage of the bias circuit.
Abstract:
A read operation for a memory device is provided. A selected word line, first and second global bit line groups and a selected first bit line group are precharged. A first cell current flowing through the selected word line, the first and the selected first bit line groups is generated. A first reference current flowing through the second global bit line group is generated. A first half page data is read based on the first cell current and the first reference current. The selected word line, the first and the second global bit line groups are kept precharged.
Abstract:
Techniques are described herein for detecting and recovering over-erased memory cells in a flash memory device. In one embodiment, a flash memory device includes a memory array including a plurality of blocks of memory cells. The device also includes a command interface to receive a command from a source external to the memory device. The device also includes a controller including logic to perform a leakage-suppression process in response to the command. The leakage-suppression process includes performing a soft program operation to increase a threshold voltage of one or more over-erased memory cells in a given block of memory cells and establish an erased state.
Abstract:
A calibration apparatus of a memory device and a calibration method thereof are provided. The memory device is a 3D NAND flash with high capacity and high performance. The calibration apparatus includes an impedance, a strong-arm comparator, a logic circuit, and a calibration controller. The impedance is configured to generate a comparison voltage. The strong-arm comparator includes a differential input pair and a latch. The differential input pair compares a reference voltage and the comparison voltage to produce a comparison result. The latch latches the comparison result and generates a latch signal and an inverted latch signal accordingly. The logic circuit generates a comparison result signal according to the latch signal and the inverted latch signal. The calibration controller implements an impedance calibration in the memory device according to the comparison result signal.