Abstract:
This invention is directed to β-1-6-glucans, compositions and devices comprising the same, and methods of use thereof in modulating immune responses. The β-1-6-glucans of certain embodiments of the invention are enriched for O-acetylated groups and/or conjugated to a solid support or linked to a targeting moiety.
Abstract:
Nanoparticles as described herein are configured to bind to bacterial contaminants, such as Gram positive bacteria, Gram negative bacteria, and endotoxins. The nanoparticles include a core comprising a magnetic material; and a plurality of ligands attached to the core. The ligands include, for example, bis(dipicolylamine) (“DPA”) coordinated with a metal ion, e.g., Zn2+ or Cu2+, to form, e.g., bis-Zn-DPA or bis-Cu-DPA, which can bind to the bacterial contaminants. The nanoparticles can be included in compositions for use in methods and systems to separate bacterial contaminants from liquids, such as liquids, such as blood, e.g., whole or diluted blood, buffer solutions, albumin solutions, beverages for human and/or animal consumption, e.g., drinking water, liquid medications for humans and/or animals, or other liquids.
Abstract:
The present invention generally relates to nanoscale wires and tissue engineering. In various embodiments, cell scaffolds for growing cells or tissues can be formed that include nanoscale wires that can be connected to electronic circuits extending externally of the cell scaffold. The nanoscale wires may form an integral part of cells or tissues grown from the cell scaffold, and can even be determined or controlled, e.g., using various electronic circuits. This approach allows for the creation of fundamentally new types of functionalized cells and tissues, due to the high degree of electronic control offered by the nanoscale wires and electronic circuits. Accordingly, such cell scaffolds can be used to grow cells or tissues which can be determined and/or controlled at very high resolutions, due to the presence of the nanoscale wires, and such cell scaffolds will find use in a wide variety of novel applications, including applications in tissue engineering, prosthetics, pacemakers, implants, or the like.
Abstract:
This invention is directed to β-1-6-glucans, compositions and devices comprising the same, and methods of use thereof in modulating immune responses. The β-1-6-glucans of certain embodiments of the invention are enriched for O-acetylated groups and/or conjugated to a solid support or linked to a targeting moiety.
Abstract:
Provided herein are hydrogels and hydrogel-forming compositions that are useful for, among others, tissue regeneration in vivo. Methods for generating such hydrogels, for example, from such hydrogel-forming compositions are also provided herein. Therapeutic methods employing hydrogels and hydrogel-forming composition, for example, for restoration of tissue perfusion in the context of acute ischemia, are also provided. The disclosure also describes kits comprising components useful for generating hydrogels as described herein.
Abstract:
Systems and methods for the activation of species and/or the delivery of species to a target environment using harmonic generation materials are generally described.