Abstract:
A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.
Abstract:
Disclosed are methods for the manufacture of n-type and p-type filled skutterudite thermoelectric legs of an electrical contact. A first material of CoSi2 and a dopant are ball-milled to form a first powder which is thermo-mechanically processed with a second powder of n-type skutterudite to form a n-type skutterudite layer disposed between a first layer and a third layer of the doped-CoSi2. In addition, a plurality of components such as iron, and nickel, and at least one of cobalt or chromium are ball-milled form a first powder that is thermo-mechanically processed with a p-type skutterudite layer to form a p-type skutterudite layer “second layer” disposed between a first and a third layer of the first powder. The specific contact resistance between the first layer and the skutterudite layer for both the n-type and the p-type skutterudites subsequent to hot-pressing is less than about 10.0 μΩ·cm2.
Abstract:
Silica aerogels with improved properties are disclosed together with methods for synthesizing such aerogels. The improved properties include lower thermal conductivity (better insulating capacity), lower acoustic velocity, lower dielectric constant and improved ductility. Greater tunability of the refractive index can also be achieved. The silica aerogels are prepared by a sol-gel processing method that provides better control of the formation or aerogel structures. Generally speaking, the improvements arise from control of the synthesis to create a morphology of primary clusters and diverse-sized secondary clusters of dense silica aerogels separated by less densely packed regions. By providing a broader range of secondary clusters and/or pore sizes and loose connectivity between clusters, reductions can be achieved in thermal conductivity and flexural modulus.
Abstract:
Process for continuous fabrication of highly aligned polymer films. A polymer-solvent solution is subjected to a high shear, high temperature, Couette flow to extrude a thin film having polymer chain disentanglement. The extruded thin film is frozen and the solvent is allowed to evaporate to form a dried film. The dried film is mechanically drawn using a constant force, adaptive-thickness drawing system to align polymer molecular chains through plastic deformation. A suitable polymer is ultra-high molecular weight polyethylene.
Abstract:
An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.
Abstract:
The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5kBT, wherein kB is the Boltzman constant and T is an average temperature of said nanocomposite composition.
Abstract:
An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.
Abstract:
The present disclosure generally relates to a stretchable anti-fogging tape (SAT) that can be applied to diverse transparent materials with varied curvatures for persistent fogging prevention. The SAT comprises three synergistically-combined transparent layers: i) a stretchable middle layer with high elastic recovery to keep transparent materials tightly bound; ii) an anti-fogging top layer to impart hydrophilicity to transparent materials; and iii) an adhesive bottom layer to form robust yet reversible adhesion between transparent materials and SATs. The SAT can be configured to have water condensate form a predominantly continuous film thereon in response to a high humidity environment At least two applications are demonstrated, including the SAT-adhered eyeglasses and goggles for clear fog-free vision, and the SAT-adhered condensation cover for efficient solar-powered freshwater production.
Abstract:
Photo-detectors disclosed include at least one of a thin film or a heterostructure of photo-sensitive material and a pair of Ohmic contacts coupled to the at least one of the thin film or the heterostructure. The at least one of the thin film or the heterostructure is configured to be under a strain gradient to induce shift current flow within the material to perform photo-detection in a frequency range that includes a mid-infrared frequency range. The photo-detectors provided for can include a variety of configurations, such as a lateral configuration or a vertical configuration, and can operate in self-powered and negative illumination regimes. Associated methods are also provided, which can include inducing a strain gradient and performing photo-detection in a frequency range that includes a mid-infrared frequency range.
Abstract:
A silica aerogel having a mean pore size less than 5 nm with a standard deviation of 3 nm. The silica aerogel may have greater than 95% solar-weighted transmittance at a thickness of 8 mm for wavelengths in the range of 250 nm to 2500 nm, and a 400° C. black-body weighted specific extinction coefficient of greater than 8 m2/kg for wavelengths of 1.5 μm to 15 μm. Silica aerogel synthesis methods are described. A solar thermal aerogel receiver (STAR) may include an opaque frame defining an opening, an aerogel layer disposed in the opaque frame, with at least a portion of the aerogel layer being proximate the opening, and a heat transfer fluid pipe in thermal contact with and proximate the aerogel layer. A concentrating solar energy system may include a STAR and at least one reflector to direct sunlight to an opening in the STAR.