Abstract:
Some embodiments include methods of forming transistors. Recesses are formed to extend into semiconductor material. The recesses have upper regions lined with liner material and have segments of semiconductor material exposed along lower regions. Semiconductor material is isotropically etched through the exposed segments which transforms the recesses into openings having wide lower regions beneath narrow upper regions. Gate dielectric material is formed along sidewalls of the openings. Gate material is formed within the openings and over regions of the semiconductor material between the openings. Insulative material is formed down the center of each opening and entirely through the gate material. A segment of gate material extends from one of the openings to the other, and wraps around a pillar of the semiconductor material between the openings. The segment is a gate of a transistor. Source/drain regions are formed on opposing sides of the gate.
Abstract:
A semiconductor device comprises a recessed access device that includes a first pillar, a second pillar, a channel region connecting the first and second pillars, and a gate disposed over the channel region. The channel region has a width that is narrower than widths of the first pillar and the second pillar. An array of recessed access devices comprises a plurality of pillars protruding from a substrate, and a plurality of channel regions. Each channel region has a width that is less than about 10 nm and couples neighboring pillars to form a plurality of junctionless recessed access devices. A method of forming at least one recessed access device also comprises forming pillars over a substrate, forming at least a channel region coupled with the pillars, the channel region having a relatively narrow width, and forming a gate at least partially surrounding the channel region on at least three sides.
Abstract:
An array of vertical transistors comprises spaced pillars individually comprising a channel region of individual vertical transistors. A horizontally-elongated conductor line directly electrically couples together individual of the channel regions of the pillars of a plurality of the vertical transistors. An upper source/drain region is above the individual channel regions of the pillars, a lower source/drain region is below the individual channel regions of the pillars, and a conductive gate line is operatively aside the individual channel regions of the pillars and that interconnects multiple of the vertical transistors. Methods are disclosed.
Abstract:
A microelectronic device comprises a first pillar of a semiconductive material, a second pillar of the semiconductive material adjacent to the first pillar of the semiconductive material, an active word line extending between the first pillar and the second pillar, and a passing word line extending on a side of the second pillar opposite the active word line, the passing word line extending into an isolation region within the semiconductive material, the isolation region comprising a lower portion and an upper portion having a substantially circular cross-sectional shape and a larger lateral dimension than the lower portion. Related microelectronic devices, electronic systems, and methods are also described.
Abstract:
Some embodiments include an integrated assembly having a memory array, and having digit lines extending along a first direction through the memory array. Insulative spacers are along sidewalls of the digit lines. The insulative spacers extend continuously along the digit lines through the memory array. Conductive regions are laterally spaced from the digit lines by intervening regions. The conductive regions are configured as segments spaced apart from one another along the first direction. The intervening regions include regions of the insulative spacers and include void regions adjacent the regions of the insulative spacers. The void regions are configured as void-region-segments which are spaced apart from one another along the first direction by insulative structures. Storage-elements are associated with the conductive regions. Some embodiments include methods of forming integrated assemblies.
Abstract:
Some embodiments include a method of forming an integrated assembly. Conductive blocks are formed over a construction. Each of the conductive blocks is over a set which includes a pair of storage-element-contact-regions and a digit-line-contact-region. Each of the conductive blocks is entirely laterally surrounded by first insulative material. Central regions of the conductive blocks are removed to split each of the conductive blocks into a first conductive portion over one of the storage-element-contact-regions and a second conductive portion over another of the storage-element-contact-regions. Second insulative material is formed between the first and second conductive portions. Digit-lines are coupled with the digit-line-contact-regions, and storage-elements are coupled with the storage-element-contact-regions.
Abstract:
Some embodiments include a method of forming an integrated assembly. Conductive blocks are formed over a construction. Each of the conductive blocks is over a set which includes a pair of storage-element-contact-regions and a digit-line-contact-region. Each of the conductive blocks is entirely laterally surrounded by first insulative material. Central regions of the conductive blocks are removed to split each of the conductive blocks into a first conductive portion over one of the storage-element-contact-regions and a second conductive portion over another of the storage-element-contact-regions. Second insulative material is formed between the first and second conductive portions. Digit-lines are coupled with the digit-line-contact-regions, and storage-elements are coupled with the storage-element-contact-regions.
Abstract:
Some embodiments include an integrated assembly having an active-region-pillar extending upwardly from a base. The active-region-pillar includes a digit-line-contact-region between a first storage-element-contact-region and a second storage-element-contact-region. A threshold-voltage-inducing-structure is adjacent a lower portion of the active-region-pillar. A first channel region includes a first portion of the active-region-pillar between the digit-line-contact-region and the first storage-element-contact-region. A second channel region includes a second portion of the active-region-pillar between the digit-line-contact-region and the second storage-element-contact-region. A first wordline is adjacent the first portion of the active-region-pillar. A second wordline is adjacent the second portion of the active-region-pillar. A digit-line is coupled with the digit-line-contact-region. First and second storage-elements are coupled with the first and second storage-element-contact-regions. A voltage source is coupled with the threshold-voltage-inducing-structure to electrostatically induce a desired threshold voltage along the first and second channel regions.
Abstract:
Some embodiments include an integrated assembly having an active-region-pillar extending upwardly from a base. The active-region-pillar includes a digit-line-contact-region between a first storage-element-contact-region and a second storage-element-contact-region. A threshold-voltage-inducing-structure is adjacent a lower portion of the active-region-pillar. A first channel region includes a first portion of the active-region-pillar between the digit-line-contact-region and the first storage-element-contact-region. A second channel region includes a second portion of the active-region-pillar between the digit-line-contact-region and the second storage-element-contact-region. A first wordline is adjacent the first portion of the active-region-pillar. A second wordline is adjacent the second portion of the active-region-pillar. A digit-line is coupled with the digit-line-contact-region. First and second storage-elements are coupled with the first and second storage-element-contact-regions. A voltage source is coupled with the threshold-voltage-inducing-structure to electrostatically induce a desired threshold voltage along the first and second channel regions.
Abstract:
Some embodiments include an integrated assembly which has digit-line-contact-regions laterally spaced from one another by intervening regions. Non-conductive-semiconductor-material is over the intervening regions. Openings extend through the non-conductive-semiconductor-material to the digit-line-contact-regions. Conductive-semiconductor-material-interconnects are within the openings and are coupled with the digit-line-contact-regions. Upper surfaces of the conductive-semiconductor-material-interconnects are beneath a lower surface of the non-conductive-semiconductor-material. Metal-containing-digit-lines are over the non-conductive-semiconductor-material. Conductive regions extend downwardly from the metal-containing-digit-lines to couple with the conductive-semiconductor-material-interconnects. Some embodiments include methods of forming integrated assemblies.