Abstract:
A light-emitting device includes: a light-emitting element; a coating member that covers the light-emitting element; and two external connection electrodes exposed form a first surface of the coating member. Each of the external connection electrodes includes an electrode buried in the coating member; and a metal layer formed on the electrode. A surface of each of the metal layers is exposed from the first surface of the coating member. The first surface of the coating member includes a plurality of grooves between the external connection electrodes.
Abstract:
A light-emitting device includes a light-emitting element that includes a layered structure including a semiconductor layer and a pair of electrodes on a first main surface of the layered structure, a light-transmissive member on a second main surface of the layered structure, the second main surface being opposite to the first main surface, a covering member covering lateral surfaces of the light-emitting element and the first main surface of the layered structure except for at least part of the pair of electrodes, a pair of first metal layers on the first main surface of the light-emitting element, the pair of first metal layers covering a surface of the covering member and being respectively connected with the pair of electrodes, and at least one second metal layer separated from the first metal layers.
Abstract:
Disclosed is a vertical nitride semiconductor device including a conductive substrate; a semiconductor layer bonded to the conductive substrate via a second electrode; a metal layer formed on the conductive substrate; a first electrode formed on the semiconductor layer; and a bonding layer formed between the conductive substrate and the second electrode. The conductive substrate has a flange part, which extends from a side surface of the conductive substrate, on a side of the other front surface thereof. The flange part is formed in a manner in which the conductive substrate and the semiconductor layer are bonded together and then a remaining part of the conductive substrate is divided, the remaining part being formed by cutting off the semiconductor layer and part of the conductive substrate in a thickness direction so as to expose a side surface of the semiconductor layer and the side surface of the conductive substrate.