Abstract:
A method of manufacturing a light emitting device includes preparing a wafer having a sapphire substrate with semiconductor structures, forming a plurality of straight-line cleavage starting portions within the substrate by scanning a laser beam, and cleaving the wafer along the cleavage starting portions to obtain a plurality of light emitting devices each having a hexagonal shape. The forming step includes forming first cleavage starting portions with each first cleavage starting portion separated by a first interval from a common vertex point of three adjacent light emitting devices, forming second cleavage starting portions with each first cleavage starting portion separated by a second interval, which is shorter than the first interval, away from the common vertex point, and forming third cleavage starting portions with each first cleavage starting portion separated by a third interval, which is shorter than the first interval, away from the common vertex point.
Abstract:
A method of manufacturing a nitride semiconductor element includes preparing a wafer having a nitride semiconductor layer which includes p-type dopants, forming an altered portion by condensing laser beam on the wafer, and after the forming an altered portion, forming a p-type nitride semiconductor layer by subjecting the wafer to annealing.
Abstract:
Disclosed is a vertical nitride semiconductor device including a conductive substrate; a semiconductor layer bonded to the conductive substrate via a second electrode; a metal layer formed on the conductive substrate; a first electrode formed on the semiconductor layer; and a bonding layer formed between the conductive substrate and the second electrode. The conductive substrate has a flange part, which extends from a side surface of the conductive substrate, on a side of the other front surface thereof. The flange part is formed in a manner in which the conductive substrate and the semiconductor layer are bonded together and then a remaining part of the conductive substrate is divided, the remaining part being formed by cutting off the semiconductor layer and part of the conductive substrate in a thickness direction so as to expose a side surface of the semiconductor layer and the side surface of the conductive substrate.
Abstract:
A light emitting device includes a base, a first light emitting element, a second light emitting element, and a sealing member. The first light emitting element has an active layer of a nitride semiconductor and has a first emission peak wavelength in a blue region. The second light emitting element has an active layer of a nitride semiconductor and has a second emission peak wavelength longer than the first emission peak wavelength of the first light emitting element. The sealing member includes a first region and a second region. The first region contains a phosphor to be excited by light from the first light emitting element. The first region is provided on an element mounting surface. A first upper surface of the first light emitting element is located in the first region. The second region does not substantially contain the phosphor and is provided on the first region.
Abstract:
Disclosed is a vertical nitride semiconductor device including a conductive substrate; a semiconductor layer bonded to the conductive substrate via a second electrode; a metal layer formed on the conductive substrate; a first electrode formed on the semiconductor layer; and a bonding layer formed between the conductive substrate and the second electrode. The conductive substrate has a flange part, which extends from a side surface of the conductive substrate, on a side of the other front surface thereof. The flange part is formed in a manner in which the conductive substrate and the semiconductor layer are bonded together and then a remaining part of the conductive substrate is divided, the remaining part being formed by cutting off the semiconductor layer and part of the conductive substrate in a thickness direction so as to expose a side surface of the semiconductor layer and the side surface of the conductive substrate.