Abstract:
The invention provides a cascode transistor circuit with a depletion mode transistor and a switching device. A gate bias circuit is connected between the gate of the depletion mode transistor and the low power line. The gate bias circuit is adapted to compensate the forward voltage of a diode function of the switching device. The depletion mode transistor and the gate bias circuit are formed as part of an integrated circuit.
Abstract:
Embodiments relate to a diode circuit which uses a Schottky diode. A parallel bypass branch has a switch and bypass diode in series. The operation of the switch is dependent on the voltage across the Schottky diode so that the bypass function is only effective when a desired voltage is reached. The diode circuit can be used as a replacement for a single diode, and provides bypass current protection preferably without requiring any external control input.
Abstract:
An integrated circuit (IC) includes circuitry in a plurality of power domains for transmitting and/or receiving radar chirp frames and first and second monitoring systems for monitoring supply voltages of a first and a second subset of the plurality of power domains, respectively. The first subset is monitored outside of a time window during which a chirp frame is transmitted and/or received utilizing circuitry of the IC, and the second subset is monitored during the time window. The first monitoring system includes an output for an error signal indicating a supply voltage in the first subset does not comply with a first voltage parameter. The second monitoring system includes a unique monitoring circuit for each power domain in the second subset, and each unique monitoring circuit includes an output for an error signal indicating a supply voltage in the second subset does not comply with a second voltage parameter.
Abstract:
A predictive controller for an inductive DC-DC converter comprising a switchable inductor is described. The predictive controller includes a DC-DC controller configured to generate a plurality of switching phases to control the inductor current in the switchable inductor, the duration of the switching phases being determined from at least one of a reference inductor current value and a reference output voltage value. The predictive controller includes a supervisory controller coupled to the DC-DC controller and configured to set a reference inductor current value dependent on an expected change in load current and/or voltage of a load configured to be connected to the load terminal. The expected change in load current and/or voltage is determined from a predetermined load profile.
Abstract:
A cascode transistor circuit comprising a depletion-mode switch in series with a normally-off switch between a drain output terminal and a source output terminal. The circuit also includes a controller comprising a controller output terminal configured to provide a normally-on control signal for a normally-on control terminal of the depletion-mode switch, wherein the normally-on control signal is independent of the normally-off control signal; a negative voltage source configured to provide a negative voltage to the normally-on control terminal of the depletion-mode switch; and a feedback capacitance between the drain output terminal and a control node in a circuit path between the controller output terminal and the normally-on control terminal of the depletion-mode switch.
Abstract:
Embodiments relate to a diode circuit which uses a Schottky diode. A parallel bypass branch has a switch and bypass diode in series. The operation of the switch is dependent on the voltage across the Schottky diode so that the bypass function is only effective when a desired voltage is reached. The diode circuit can be used as a replacement for a single diode, and provides bypass current protection preferably without requiring any external control input.
Abstract:
A cascode circuit arrangement has a low voltage MOSFET and a depletion mode power device mounted on a substrate (for example a ceramic substrate), which can then be placed in a semiconductor package. This enables inductances to be reduced, and can enable a three terminal packages to be used if desired.
Abstract:
A cascoded power semiconductor circuit is provided for power switches based on depletion-mode (normally on) devices. The control circuit makes use of a bootstrap arrangement that allows an active control of both power switches of a cascode circuit using a single gate driver.
Abstract:
A cascode circuit arrangement has a low voltage MOSFET and a depletion mode power device mounted on a substrate (for example a ceramic substrate), which can then be placed in a semiconductor package. This enables inductances to be reduced, and can enable a three terminal packages to be used if desired.