摘要:
An ESD protection device includes a ceramic multilayer board, a cavity disposed in the ceramic multilayer board, at least one pair of discharge electrodes having ends, edges of the ends being opposed to each other at a predetermined distance in the cavity, and external electrodes disposed on outer surfaces the ceramic multilayer board and connected to the discharge electrodes. The ceramic multilayer board includes a composite portion, which is disposed in the vicinity of the surface on which the discharge electrodes are disposed and is at least disposed adjacent to the opposed ends of the discharge electrodes and to a space between the opposed ends. The composite portion includes a metal material and a ceramic material.
摘要:
To provide a ceramic composition not only having little compositional variation after burning, but a high flexural strength of the sintered body, and a high Q value in a microwave band, a ceramic composition used for forming a ceramic layer of a multi-layer ceramic substrate contains 47.0 to 67.0 wt. % of SiO2, 21.0 to 41.0 wt. % of BaO, and 10.0 to 18.0 wt. % of Al2O3, and contains as a first additive, 1.0 to 5.0 parts by weight of CeO2, relative to a total of 100 parts of SiO2, BaO and Al2O3, and as a second additive, 2.5 to 5.5 parts by weight of MnO, relative to a total of 100 parts by weight of SiO2, BaO, Al2O3 and CeO2, and is substantially free of Cr. As a third additive, at least one of Zr, Ti, Zn, Nb, Mg and Fe, and as a fourth additive, a Co component and/or a V component, may be contained.
摘要翻译:为了提供陶瓷组合物,其不仅在燃烧后具有很小的组成变化,而且烧结体的高弯曲强度和微波带中的高Q值,用于形成多层陶瓷基板的陶瓷层的陶瓷组合物 含有47.0〜67.0重量% %的SiO 2,21.0〜41.0重量% %的BaO和10.0〜18.0wt。 %的Al 2 O 3,并且作为第一添加剂含有1.0至5.0重量份的CeO 2,相对于总计为100重量份的SiO 2,BaO和Al 2 O 3,作为第二添加剂,2.5至5.5重量份的MnO相对 至100重量份的SiO 2,BaO,Al 2 O 3和CeO 2,并且基本上不含Cr。 作为第三添加剂,可以包含Zr,Ti,Zn,Nb,Mg和Fe中的至少一种,以及作为第四添加剂的Co成分和/或V成分。
摘要:
An electrically conductive paste used for forming wiring conductors, such as via holes disposed on a multilayer ceramic substrate, is provided, wherein the temperature range, in which sintering is effected in a firing step can be controlled relatively optimally. The electrically conductive paste contains a metal powder, a glass frit, and an organic vehicle. An inorganic component, which is not sintered at a sintering temperature capable of sintering the ceramic layers (included in the multilayer ceramic substrate in the firing step, is disposed on particle surfaces of the metal powder. The glass frit has a softening point 150° C. to 300° C. lower than the above-described sintering temperature.
摘要:
An ESD protection device is manufactured such that its ESD characteristics are easily adjusted and stabilized. The ESD protection device includes an insulating substrate, a cavity provided in the insulating substrate, at least one pair of discharge electrodes each including a portion exposed in the cavity, the exposed portions being arranged to face each other, and external electrodes provided on a surface of the insulating substrate and connected to the at least one pair of discharge electrodes. A particulate supporting electrode material having conductivity is dispersed between the exposed portions of the at least one pair of discharge electrodes in the cavity.
摘要:
An ESD protection device has a structure that allows ESD characteristics to be easily adjusted and stabilized. The ESD protection device includes a ceramic multilayer substrate, at least a pair of discharge electrodes located in the ceramic multilayer substrate and facing each other with a space disposed therebetween, and external electrodes located on a surface of the ceramic multilayer substrate and connected to the discharge electrodes. The ESD protection device includes a supporting electrode disposed in a region that connects the pair of discharge electrodes. The supporting electrode is made of a conductive material coated with an inorganic material having no conductivity.
摘要:
An insulating thick film composition for forming a solder resist layer having a high degree of positional accuracy is provided, which can suppress warping and undulation of a multilayer ceramic substrate and can maintain the superior electrical characteristics thereof. The insulating thick film composition is primarily composed of a powdered ceramic having the same composition system as that of a powdered ceramic contained in a green ceramic sheet, and the mean particle diameter of the powdered ceramic of the insulating thick film composition is smaller than that of the powdered ceramic contained in the green ceramic body.
摘要:
A substrate including an ESD protection function includes an insulating substrate, at least one of circuit elements or a wiring pattern and an ESD protection portion. In the ESD protection portion, facing portions of at least one pair of discharge electrodes are disposed in a cavity provided in the insulating substrate so that the ends face each other. The discharge electrodes are electrically connected to the circuit elements and or the wiring pattern.
摘要:
An electrically conductive paste used for forming wiring conductors, such as via holes disposed on a multilayer ceramic substrate, is provided, wherein the temperature range in which sintering is effected in a firing step can be controlled relatively optimally. The electrically conductive paste contains a metal powder, a glass frit, and an organic vehicle. An inorganic component, which is not sintered at a sintering temperature capable of sintering the ceramic layers included in the multilayer ceramic substrate in the firing step, is disposed on particle surfaces of the metal powder. The glass frit has a softening point 150° C. to 300° C. lower than the above-described sintering temperature.
摘要:
A ceramic multi-layer wiring substrate includes a line-shaped insulation pattern arranged to extend over a plurality of surface wiring patterns and to intersect the respective surface wiring patterns, in which soldering land electrodes are defined by the insulation patterns.
摘要:
An ESD protection device is manufactured such that its ESD characteristics are easily adjusted and stabilized. The ESD protection device includes an insulating substrate, a cavity provided in the insulating substrate, at least one pair of discharge electrodes each including an exposed portion that is exposed in the cavity, and external electrodes provided on a surface of the insulating substrate and connected to the discharge electrodes. Supporting electrodes obtained by dispersing conductive powder in an insulating material defining the insulating substrate are provided along a bottom surface and a top surface that define the cavity between the exposed portions of the at least one pair of discharge electrodes.